Atmospheric methane growth reached an exceptionally high rate of 15.1 ± 0.4 parts per billion per year in 2020 despite a probable decrease in anthropogenic methane emissions during COVID-19 lockdowns.
View Article and Find Full Text PDFNitrous oxide (NO), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric NO concentrations have contributed to stratospheric ozone depletion and climate change, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of NO emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources.
View Article and Find Full Text PDFOur understanding and quantification of global soil nitrous oxide (N O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO concentration, on global soil N O emissions for the period 1861-2016 using a standard simulation protocol with seven process-based terrestrial biosphere models. Results suggest global soil N O emissions have increased from 6.
View Article and Find Full Text PDF