Publications by authors named "Rona K Graham"

Olfactory dysfunction and atrophy of olfactory brain regions are observed early in mild cognitive impairment and Alzheimer disease. Despite substantial evidence showing neuroprotective effects in MCI/AD with treatment of docosahexaenoic acid (DHA), an omega-3 fatty acid, few studies have assessed DHA and its effects on the olfactory system deficits. We therefore performed structural (MRI), functional (olfactory behavior, novel object recognition), and molecular (markers of apoptosis and inflammation) assessments of APOE4 and wild-type mice ± DHA treatment at 3, 6, and 12 months of age.

View Article and Find Full Text PDF

Olfactory dysfunction is a common symptom in neurodegenerative disorders and is regarded as a potential early predictor of impending cognitive decline. This study was undertaken in order to determine if olfactory dysfunction observed in the elderly is due to a general loss of smell or the inability to detect specific odours, and if misidentification of odours correlates with cognitive scores. Seniors for the Olfactory Response and Cognition in Aging (ORCA) sub-study were recruited from the Quebec Nutrition and Successful Aging (NuAge) cohort.

View Article and Find Full Text PDF

Background: In many neurological disorders, including Alzheimer disease, early olfactory dysfunction is observed.

Objective: In order to determine if deficits in olfactory memory are present in the elderly and if olfactory dysfunction correlates with cognitive impairment in the aging population, olfactory testing has been done on seniors from the NuAge cohort accepting to participate in the Olfactory Response Cognition and Aging (ORCA) secondary sub-study. The t-Mini Mental Statement Examination and the Telephone Interview for Cognitive Status tests were done to assess cognition levels.

View Article and Find Full Text PDF

Olfactory dysfunction is observed in several neurological disorders including Mild Cognitive Impairment (MCI) and Alzheimer disease (AD). These deficits occur early and correlate with global cognitive performance, depression and degeneration of olfactory regions in the brain. Despite extensive human studies, there has been little characterization of the olfactory system in models of AD.

View Article and Find Full Text PDF

Objective: Alzheimer disease (AD) is a chronic neurodegenerative disorder that affects millions of individuals worldwide. Symptoms include memory dysfunction and deficits in attention, planning, language, and overall cognitive function. Olfactory dysfunction is a common symptom of AD and evidence supports that it is an early marker.

View Article and Find Full Text PDF

Excitotoxicity, due to overstimulation of N-methyl D-aspartate receptors (NMDARs), has a pivotal role in many neurological disorders. However, NMDAR antagonists often cause side effects, and identifying more druggable therapeutic targets for NMDAR excitotoxicity is an important goal. Activation of caspases is a downstream effect of excitotoxicity that may be critically involved in NMDAR-mediated cell death.

View Article and Find Full Text PDF

Caspases and their substrates are key mediators of apoptosis and strongly implicated in various physiological processes. As the serine/threonine kinase family is involved in apoptosis and serine/threonine kinase 3 (STK3) is a recently identified caspase-6 substrate, we assessed the expression and cleavage of STK3 in murine peripheral organs and brain regions during the aging process. We also assessed caspase-3, -6, -7, and -8 expression and activity in order to delineate potential mechanism(s) underlying the generation of the STK3 fragments observed and their relation to the apoptotic pathway.

View Article and Find Full Text PDF

Death-associated protein 6 (DAXX) is a ubiquitous protein implicated in various cellular processes such as apoptosis, tumorigenesis, development and transcription. The role of DAXX is however ambiguous and many contradictory results regarding its function in apoptosis upon various cellular stresses are described in the literature. In order to have a better understanding of the role of DAXX throughout the entire organism under physiological stress conditions, we have characterized the mRNA levels, protein expression and the proteolytic processing of DAXX in the normal aging process in peripheral organs and brain regions in C57BL/6 male mice.

View Article and Find Full Text PDF

Caspase-6 (CASP6) has emerged as an important player in Huntington disease (HD), Alzheimer disease (AD) and cerebral ischemia, where it is activated early in the disease process. CASP6 also plays a key role in axonal degeneration, further underscoring the importance of this protease in neurodegenerative pathways. As a protein's function is modulated by its protein-protein interactions, we performed a high-throughput yeast-2-hybrid (Y2H) screen against ∼17,000 human proteins to gain further insight into the function of CASP6.

View Article and Find Full Text PDF

Background: Arrhythmias associated with QT prolongation on the ECG often lead to sudden unexpected death in epilepsy. The mechanism causing a prolongation of the QT interval during epilepsy remains unknown. Based on observations showing an upregulation of neuronal sodium channels in the brain during epilepsy, we tested the hypothesis that a similar phenomenon occurs in the heart and contributes to QT prolongation by altering cardiac sodium current properties (INa).

View Article and Find Full Text PDF

Assemblies of huntingtin (HTT) fragments with expanded polyglutamine (polyQ) tracts are a pathological hallmark of Huntington's disease (HD). The molecular mechanisms by which these structures are formed and cause neuronal dysfunction and toxicity are poorly understood. Here, we utilized available gene expression data sets of selected brain regions of HD patients and controls for systematic interaction network filtering in order to predict disease-relevant, brain region-specific HTT interaction partners.

View Article and Find Full Text PDF

In order to further understand age-related physiological changes and to have in depth reference values for C57BL/6 mice, we undertook a study to assess the effects of aging on peripheral organ weights, and brain region weights in wild type C57BL/6 male mice. Peripheral organs, body and brain region weights were collected from young (3-4 months), mid (12 months), old (23-28 months) and very old (>30 months) mice. Significant increases are observed with aging in body, liver, heart, kidney and spleen organ weights.

View Article and Find Full Text PDF

Huntington Disease (HD) is a progressive neurodegenerative disease caused by an elongated CAG repeat in the huntingtin (HTT) gene that encodes a polyglutamine tract in the HTT protein. Proteolysis of the mutant HTT protein (mHTT) has been detected in human and murine HD brains and is implicated in the pathogenesis of HD. Of particular importance is the site at amino acid (aa) 586 that contains a caspase-6 (Casp6) recognition motif.

View Article and Find Full Text PDF

HIP14 is the most highly conserved of 23 human palmitoyl acyltransferases (PATs) that catalyze the post-translational addition of palmitate to proteins, including huntingtin (HTT). HIP14 is dysfunctional in the presence of mutant HTT (mHTT), the causative gene for Huntington disease (HD), and we hypothesize that reduced palmitoylation of HTT and other HIP14 substrates contributes to the pathogenesis of the disease. Here we describe the yeast two-hybrid (Y2H) interactors of HIP14 in the first comprehensive study of interactors of a mammalian PAT.

View Article and Find Full Text PDF

Huntington's disease is caused by an expanded polyglutamine repeat in the huntingtin protein (HTT), but the pathophysiological sequence of events that trigger synaptic failure and neuronal loss are not fully understood. Alterations in N-methyl-D-aspartate (NMDA)-type glutamate receptors (NMDARs) have been implicated. Yet, it remains unclear how the HTT mutation affects NMDAR function, and direct evidence for a causative role is missing.

View Article and Find Full Text PDF

Huntington disease (HD), a neurodegenerative disorder caused by an expanded CAG repeat in the HTT gene, remains without a treatment to modify the course of the illness. Lithium, a drug widely used for the treatment of bipolar disorder, has been shown to exert neuroprotective effects in a number of models of neurological disease but may have various toxic effects at conventional therapeutic doses. We examined whether NP03, a novel low-dose lithium microemulsion, would improve the disease phenotypes in the YAC128 mouse model of HD.

View Article and Find Full Text PDF

Apoptosis, or programmed cell death, is a cellular pathway involved in normal cell turnover, developmental tissue remodeling, embryonic development, cellular homeostasis maintenance and chemical-induced cell death. Caspases are a family of intracellular proteases that play a key role in apoptosis. Aberrant activation of caspases has been implicated in human diseases.

View Article and Find Full Text PDF

Huntington's disease (HD) is caused by a polyglutamine expansion in the Huntingtin (Htt) protein. Proteolytic cleavage of Htt into toxic N-terminal fragments is believed to be a key aspect of pathogenesis. The best characterized putative cleavage event is at amino acid 586, hypothesized to be mediated by caspase 6.

View Article and Find Full Text PDF

Background: The amelioration of behavioral and neuropathological deficits in mice expressing caspase-6-resistant (C6R) mutant huntingtin (mhtt), despite the presence of an expanded polyglutamine tract, highlights proteolysis of htt at the 586aa caspase-6 (casp6) site may be an important mechanism in the pathogenesis of Huntington disease (HD). One possible explanation of these effects is that C6R mhtt could act as a dominant negative on mhtt.

Objective And Methods: To determine if the neuroprotective effect observed in the C6R mice is due to dominant negative effects, we crossed the C6R mice to the YAC128 HD mouse model to generate mice expressing both caspase-cleavable and C6R mhtt (YAC/C6R) concurrently and assessed previously defined behavioral and neuropathological endpoints.

View Article and Find Full Text PDF

Caspases are cysteine-aspartic proteases that post-translationally modify their substrates through cleavage at specific sites, which causes either substrate inactivation or a gain of function through the generation of active fragments. Currently, each caspase is categorized as either an initiator of apoptosis or an end-stage executioner. Caspase-6 was originally identified as an executioner caspase owing to its role in cleavage of nuclear lamins.

View Article and Find Full Text PDF

Background: Huntington Disease (HD) is a neurodegenerative disorder in which caspase activation and cleavage of substrates, including the huntingtin protein, has been invoked as a pathological mechanism. Specific changes in caspase-2 (casp2) activity have been suggested to contribute to the pathogenesis of HD, however unique casp2 cleavage substrates have remained elusive. We thus utilized mice completely lacking casp2 (casp2-/-) to examine the role played by casp2 in the progression of HD.

View Article and Find Full Text PDF

Caspase cleavage of huntingtin (htt) and nuclear htt accumulation represent early neuropathological changes in brains of patients with Huntington's disease (HD). However, the relationship between caspase cleavage of htt and caspase activation patterns in the pathogenesis of HD remains poorly understood. The lack of a phenotype in YAC mice expressing caspase-6-resistant (C6R) mutant htt (mhtt) highlights proteolysis of htt at the 586 aa caspase-6 (casp6) site as a key mechanism in the pathology of HD.

View Article and Find Full Text PDF

YAC transgenic mice expressing poly(Q)-expanded full-length huntingtin (mhtt) recapitulate many behavioral and neuropathological features of Huntington disease (HD). We have previously observed a reduction in phosphorylation of mhtt at S421 in the presence of the mutation for HD. In addition, phosphorylation of normal S421-htt is reduced after excitotoxic stimulation of NMDA receptors (NMDARs).

View Article and Find Full Text PDF

N-methyl-D-aspartate receptor (NMDAR) excitotoxicity is implicated in the pathogenesis of Huntington's disease (HD), a late-onset neurodegenerative disorder. However, NMDARs are poor therapeutic targets, due to their essential physiological role. Recent studies demonstrate that synaptic NMDAR transmission drives neuroprotective gene transcription, whereas extrasynaptic NMDAR activation promotes cell death.

View Article and Find Full Text PDF

Levels of full-length huntingtin (FL htt) influence organ and body weight, independent of polyglutamine length. The growth hormone-insulin like growth factor-1 (GH-IGF-1) axis is well established as a regulator of organ growth and body weight. In this study, we investigate the involvement of the IGF-1 pathway in mediating the effect of htt on body weight.

View Article and Find Full Text PDF