Taste buds in the oral cavity have a complex immune system regulating normal functions and inflammatory reactions. Cyclophosphamide (CYP), a chemotherapy drug, has wide-ranging disruptive effects on the taste system including loss of taste function, taste sensory cells, and capacity for taste cell renewal. In bladder epithelium, CYP also induces inflammation.
View Article and Find Full Text PDFCancer is often treated with broad-spectrum cytotoxic drugs that not only eradicate cancerous cells but also have detrimental side effects. One of these side effects, disruption of the olfactory system, impedes a patient's ability to smell, perceive flavor, and ultimately may interfere with their nutritional intake and recovery from cancer. Recent studies reported that the chemotherapy drug, cyclophosphamide (CYP), can damage gustatory epithelia and disrupt cell proliferation in olfactory epithelia.
View Article and Find Full Text PDFChemotherapy patients often experience chemosensory changes during and after drug therapy. The chemotherapy drug, cyclophosphamide (CYP), has known cytotoxic effects on sensory and proliferating cells of the taste system. Like the taste system, cells in the olfactory epithelia undergo continuous renewal.
View Article and Find Full Text PDFChemotherapy often causes side effects that include disturbances in taste functions. Cyclophosphamide (CYP) is a chemotherapy drug that, after a single dose, elevates murine taste thresholds at times related to drug-induced losses of taste sensory cells and disruptions of proliferating cells that renew taste sensory cells. Pretreatment with amifostine can protect the taste system from many of these effects.
View Article and Find Full Text PDFMany commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays.
View Article and Find Full Text PDFUmami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5' ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2013
We tested several molecular and cellular mechanisms of cardiomyocyte contraction-relaxation function that could account for the reduced systolic and enhanced diastolic function observed with exposure to extracellular Zn(2+). Contraction-relaxation function was monitored in isolated rat and mouse cardiomyocytes maintained at 37°C, stimulated at 2 or 6 Hz, and exposed to 32 μM Zn(2+) or vehicle. Intracellular Zn(2+) detected using FluoZin-3 rose to a concentration of ∼13 nM in 3-5 min.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
May 2010
Located at the anterior portion of the nose, the paired vomeronasal organs (VNO) detect odors and pheromones. In vomeronasal sensory neurons (VSNs) odor responses are mainly mediated by phospholipase C (PLC), stimulation of which elevates diacylglycerol (DAG). DAG activates a transient receptor potential channel (TRPC2) leading to cell depolarization.
View Article and Find Full Text PDFThe vomeronasal organ (VNO) is an odor detection system that mediates many pheromone-sensitive behaviors. Vomeronasal sensory neurons (VSNs), located in the VNO, are the initial site of interaction with odors/pheromones. However, how an individual VSN transduces chemical signals into electrical signals is still unresolved.
View Article and Find Full Text PDFMost odor responses in mouse vomeronasal neurons are mediated by the phospholipase C (PLC) pathway, activation of which elevates diacylglycerol (DAG). Lucas et al. showed that DAG activates transient receptor potential channels, subfamily C, member 2 (TRPC2), resulting in a depolarizing Ca2+ influx.
View Article and Find Full Text PDFThe terminal nerve (nervus terminalis) extends from the basal forebrain to the nasal cavity and has been shown to contain gonadotropin-releasing hormone (GnRH). The specific function of the terminal nerve is unknown, but it has been hypothesized that it modulates the function of olfactory neurons. To examine the effects of GnRH on isolated Necturus maculosus olfactory sensory neurons (OSNs), we used the perforated configuration of the patch clamp technique to record current responses.
View Article and Find Full Text PDFMany odor responses are mediated by the adenosine 3',5'-cyclic monophosphate (cAMP) pathway in which the cAMP-gated current is amplified by Ca2+-dependent Cl- current. In olfactory neurons, prolonged exposure to odors decreases the odor response and is an adaptive effect. Several studies suggest that odor adaptation is linked to elevated intracellular Ca2+.
View Article and Find Full Text PDFCoupling of olfactory sensory neurons (OSNs) in the olfactory epithelium of Necturus maculosus was demonstrated by dye-transfer with Lucifer yellow CH; however, the incidence of dye-transfer was low. Immunocytochemistry and Western blot analysis indicated that connexin 43, a gap junction channel subunit, was widely expressed by cells in the olfactory epithelium. Electrical coupling by presumptive gap junctions was assessed using electrophysiological recordings, heptanol block, tracer-uptake through hemi-junctions, and tracer-injection into tissue whole-mounts.
View Article and Find Full Text PDFOdor transduction mediated by the adenylyl cyclase/cAMP pathway has been well studied, but it is still uncertain whether this pathway mediates the transduction of all odors in vertebrates. We isolated olfactory sensory neurons from the salamander Necturus maculosus and used calcium imaging with the indicator dye fura-2 to examine olfactory responses elicited by amino acids. The properties of approximately two-thirds of the odor responses suggested they were mediated by the adenylyl cyclase/cAMP pathway, but one-third of the responses were not mimicked by cAMP analogs nor blocked by inhibition of adenylyl cyclase, suggesting that these odor responses were mediated differently.
View Article and Find Full Text PDF