Publications by authors named "Ron Yu"

We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors (VRs) and a population of canonical olfactory sensory neurons in the VNO. High-resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population.

View Article and Find Full Text PDF

According to ICH E9(R1), defining the estimand comes before defining the analysis approach, and the strategies for addressing intercurrent events are key components of the estimand. With the composite strategy, the problem of missing data disappears, because it becomes part of the endpoint definition. It is this perspective that we adopt in addressing the problem of missing data.

View Article and Find Full Text PDF

We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors and a population of canonical olfactory sensory neurons in the VNO. High resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population.

View Article and Find Full Text PDF

The phenomenon of delta inflation, in which design treatment effects tend to exceed observed treatment effects, has been documented in several therapeutic areas. Delta inflation has often been attributed to investigators' optimism bias, or an unwarranted belief in the efficacy of new treatments. In contrast, we argue that delta inflation may be a natural consequence of clinical equipoise, that is, genuine uncertainty about the relative benefits of treatments before a trial is initiated.

View Article and Find Full Text PDF

Post-Acute Sequelae of COVID-19 (PASC) encompasses persistent neurological symptoms, including olfactory and autonomic dysfunction. Here, we report chronic neurological dysfunction in mice infected with a virulent mouse-adapted SARS-CoV-2 that does not infect the brain. Long after recovery from nasal infection, we observed loss of tyrosine hydroxylase (TH) expression in olfactory bulb glomeruli and neurotransmitter levels in the substantia nigra (SN) persisted.

View Article and Find Full Text PDF

Neural activity influences every aspect of nervous system development. In olfactory systems, sensory neurons expressing the same odorant receptor project their axons to stereotypically positioned glomeruli, forming a spatial map of odorant receptors in the olfactory bulb. As individual odors activate unique combinations of glomeruli, this map forms the basis for encoding olfactory information.

View Article and Find Full Text PDF

As an alternative to the Frequentist p-value, the Bayes factor (or ratio of marginal likelihoods) has been regarded as one of the primary tools for Bayesian hypothesis testing. In recent years, several researchers have begun to re-analyze results from prominent medical journals, as well as from trials for FDA-approved drugs, to show that Bayes factors often give divergent conclusions from those of p-values. In this paper, we investigate the claim that Bayes factors are straightforward to interpret as directly quantifying the relative strength of evidence.

View Article and Find Full Text PDF
Article Synopsis
  • Brain development is complex and involves the gradual maturation of neural circuits, but understanding the timing and processes behind this maturation has been challenging due to difficulties in tracking developing neuron populations.
  • The introduction of DevATLAS allows researchers to create the first detailed map of how these circuits mature over time in young mouse brains, providing insight into neurodevelopmental disorders.
  • Using this innovative mapping system, the study reveals that early life experiences can speed up certain types of learning by promoting the growth of mature neurons in the hippocampus, while also uncovering the molecular mechanisms contributing to this process.
View Article and Find Full Text PDF

Spatial transcriptomics maps RNA molecules to the location in a tissue where they are expressed. Here we document the use of Slide-SeqV2 to visualize gene expression in the mouse olfactory bulb (OB). This approach relies on spatially identified beads to locate and quantify individual transcripts.

View Article and Find Full Text PDF

Bayesian predictive probabilities have become a ubiquitous tool for design and monitoring of clinical trials. The typical procedure is to average predictive probabilities over the prior or posterior distributions. In this paper, we highlight the limitations of relying solely on averaging, and propose the reporting of intervals or quantiles for the predictive probabilities.

View Article and Find Full Text PDF

Here, we describe a fluorescent in situ hybridization protocol named Yn-situ, standing for Y-branched probe in situ hybridization, to detect RNAs from mice tissue sections. We provide steps for the synthesis and quantification of preamplifier probe using nickase. We also detail the preparation of tissue section, probe hybridization, signal development using hybridization chain reaction (HCR), and quantification of the signals.

View Article and Find Full Text PDF

We describe a cost-effective, highly sensitive, and quantitative method for detection of RNA molecules in tissue sections. This method, dubbed Yn-situ, standing for Y-branched probe hybridization, uses a single-strand DNA preamplifier with multiple initiation sites that trigger a hybridization chain reaction (HCR) to detect polynucleotides. By characterizing the performance of this method, we show that the Yn-situ method, in conjunction with an improved fixation step, is sensitive enough to allow detection of RNA molecules using fewer probes targeting short nucleotide sequences than existing methods.

View Article and Find Full Text PDF

Sensory inputs conveying information about the environment are often noisy and incomplete, yet the brain can achieve remarkable consistency in recognizing objects. Presumably, transforming the varying input patterns into invariant object representations is pivotal for this cognitive robustness. In the classic hierarchical representation framework, early stages of sensory processing utilize independent components of environmental stimuli to ensure efficient information transmission.

View Article and Find Full Text PDF

The win ratio composite endpoint, which organizes the components of the composite hierarchically, is becoming popular in late-stage clinical trials. The method involves comparing data in a pair-wise manner starting with the endpoint highest in priority (eg, cardiovascular death). If the comparison is a tie, the endpoint next highest in priority (eg, hospitalizations for heart failure) is compared, and so on.

View Article and Find Full Text PDF

We present a general physicochemical sampling model for olfaction, based on established pharmacological laws, in which arbitrary combinations of odorant ligands and receptors can be generated and their individual and collective effects on odor representations and olfactory performance measured. Individual odor ligands exhibit receptor-specific affinities and efficacies; that is, they may bind strongly or weakly to a given receptor, and can act as strong agonists, weak agonists, partial agonists, or antagonists. Ligands interacting with common receptors compete with one another for dwell time; these competitive interactions appropriately simulate the degeneracy that fundamentally defines the capacities and limitations of odorant sampling.

View Article and Find Full Text PDF

Animals possess an inborn ability to recognize certain odors to avoid predators, seek food, and find mates. Innate odor preference is thought to be genetically hardwired. Here we report that acquisition of innate odor recognition requires spontaneous neural activity and is influenced by sensory experience during early postnatal development.

View Article and Find Full Text PDF

Odors carrying intrinsic values often trigger instinctive aversive or attractive responses. It is not known how innate valence is encoded. An intuitive model suggests that the information is conveyed through specific channels in hardwired circuits along the olfactory pathway, insulated from influences of other odors, to trigger innate responses.

View Article and Find Full Text PDF

Quiescent stem cells have been found in multiple adult organs, and activation of these stem cells is critical to the restoration of damaged tissues in response to injury or stress. Existing evidence suggests that extrinsic cues from the extracellular matrix or supporting cells of various stem cell niches may interact with intrinsic components to initiate stem cell differentiation, but the molecular and cellular mechanisms regulating their activation are not fully understood. In the present study, we find that olfactory horizontal basal cells (HBCs) are stimulated by neural glial-related cell adhesion molecules (NrCAMs).

View Article and Find Full Text PDF
Article Synopsis
  • Post-infectious anosmias occur after the death of olfactory sensory neurons, but COVID-19 patients often regain their sense of smell quickly, typically within days to weeks.
  • Research shows that inflammation from COVID-19 may reduce the expression of odorant receptors in the nose, leading to weakened odor discrimination despite the olfactory circuit remaining intact.
  • Patients infected with COVID-19 report lower intensity in odors and have difficulties in distinguishing different smells compared to those who tested negative for the virus.
View Article and Find Full Text PDF

The BaseScope™ assay is a novel, highly sensitive RNA hybridization (ISH) technique, allowing detection of short RNA sequences as well as discrimination between single-nucleotide alterations. Multiplexing BaseScope™ ISH with immunofluorescence assay has proven challenging because the diffusion of colorimetric dyes such as Fast Red in aqueous solutions degrades spatial resolution. In this study, we explore alkaline phosphatase-based fluorescent signal detection methods and integrate it with BaseScope™ RNA ISH.

View Article and Find Full Text PDF

In the developing brain, heightened plasticity during the critical period enables the proper formation of neural circuits. Here, we identify the "navigator" neurons, a group of perinatally born olfactory sensory neurons, as playing an essential role in establishing the olfactory map during the critical period. The navigator axons project circuitously in the olfactory bulb and traverse multiple glomeruli before terminating in perspective glomeruli.

View Article and Find Full Text PDF