Countless processes in nature and industry, from rain droplet nucleation to plankton interaction in the ocean, are intimately related to turbulent fluctuations of local concentrations of advected matter. These fluctuations can be described by considering the change of the separation between particle pairs, known as pair dispersion, which is believed to obey a cubic in time growth according to Richardson's theory. Our work reveals a universal, scale-invariant alignment between the relative velocity and position vectors of dispersing particles at a mean angle that we show to be a universal constant of turbulence.
View Article and Find Full Text PDFDirect estimation of Lagrangian turbulence statistics is essential for the proper modeling of dispersion and transport in highly obstructed canopy flows. However, Lagrangian flow measurements demand very high rates of data acquisition, resulting in bottlenecks that prevented the estimation of Lagrangian statistics in canopy flows hitherto. We report on a new extension to the 3D Particle Tracking Velocimetry (3D-PTV) method, featuring real-time particle segmentation that outputs centroids and sizes of tracer particles and performed on dedicated hardware during high-speed digital video acquisition from multiple cameras.
View Article and Find Full Text PDFWe present a generalization of turbulent pair dispersion to large initial separations (η