Publications by authors named "Ron M Fourney"

The ability to properly collect, analyze and preserve biological stains is important to preserving the integrity of forensic evidence. Stabilization of intact biological evidence in cells and the DNA extracts from them is particularly important since testing is generally not performed immediately following collection. Furthermore, retesting of stored DNA samples may be needed in casework for replicate testing, confirmation of results, and to accommodate future testing with new technologies.

View Article and Find Full Text PDF

A semi-automated DNA extraction process for casework samples based on the Promega DNA IQ™ system was optimized and validated on TECAN Genesis 150/8 and Freedom EVO robotic liquid handling stations configured with fixed tips and a TECAN TE-Shake™ unit. The use of an orbital shaker during the extraction process promoted efficiency with respect to DNA capture, magnetic bead/DNA complex washes and DNA elution. Validation studies determined the reliability and limitations of this shaker-based process.

View Article and Find Full Text PDF

Archival tissue preserved in fixative constitutes an invaluable resource for histological examination, molecular diagnostic procedures and for DNA typing analysis in forensic investigations. However, available material is often limited in size and quantity. Moreover, recovery of DNA is often severely compromised by the presence of covalent DNA-protein cross-links generated by formalin, the most prevalent fixative.

View Article and Find Full Text PDF

An automated process has been developed for the analysis of forensic casework samples using TECAN Genesis RSP 150/8 or Freedom EVO liquid handling workstations equipped exclusively with nondisposable tips. Robot tip cleaning routines have been incorporated strategically within the DNA extraction process as well as at the end of each session. Alternative options were examined for cleaning the tips and different strategies were employed to verify cross-contamination.

View Article and Find Full Text PDF

To assist the interpretation of STR DNA typing results from forensic casework samples containing mixtures, the range of heterozygous allele peak height and peak area ratios (HR) and stutter percentages (stutter %) for the loci comprised in the AmpFlSTR Profiler Plus (PP) kit were assessed on 468 database and 275 casework single source samples. Stutter % medians were similar for database and casework samples, ranging from 2% to 7%. The upper limit of the stutter value range was 16%, calculated as median +3 SD, although lower locus-specific values could be used.

View Article and Find Full Text PDF

A bioinformatic tool was developed to assist with the victim identification initiative that followed the Swissair Flight 111 disaster. Making use of short tandem repeat (STR) DNA typing data generated with AmpFlSTR Profiler Plus (PP) and AmpFlSTR COfiler(CO) kits, the software systematically compared each available STR genotype with every other genotype. The matching algorithm was based on the search for: (i) direct matches to genotypes derived from personal effects; and (ii) potential kinship associations between victims and next-of-kin, as measured by allele sharing at individual loci.

View Article and Find Full Text PDF

Base-calling precision of short tandem repeat (STR) allelic bands on dynamic slab-gel electrophoresis systems was evaluated. Data was collected from over 6000 population database allele peaks generated from 468 population database samples amplified with the AmpF/STR Profiler Plus (PP) kit and electrophoresed on ABD 377 DNA sequencers. Precision was measured by way of standard deviations and was shown to be essentially the same, whether using fixed or floating bin genotyping.

View Article and Find Full Text PDF

As part of the validation of the AmpFlSTR Profiler Plus short tandem repeat (STR) system, under reduced polymerase chain reaction (PCR) volume conditions (i.e., 25 microL), a total of 275 casework samples were processed.

View Article and Find Full Text PDF

Improvements in detection limits/sensitivity and lower sample consumption are potential benefits of reducing PCR reaction volumes used in forensic DNA typing of crime scene samples. This premise was studied first with experimental mixtures and a nine-loci megaplex, which demonstrated stochiometric amplification and accurate detection. Next, adjudicated casework samples were subjected to amplification under 15 different template DNA to PCR reaction volume ratios.

View Article and Find Full Text PDF