Purpose: To evaluate the performance of different probabilistic classifiers to predict posterior capsule rupture (PCR) prior to cataract surgery.
Methods: Three probabilistic classifiers were constructed to estimate the probability of PCR: a Bayesian network (BN), logistic regression (LR) model, and multi-layer perceptron (MLP) network. The classifiers were trained on a sample of 2 853 376 surgeries reported to the European Registry of Quality Outcomes for Cataract and Refractive Surgery (EUREQUO) between 2008 and 2018.