Mineral exploitation has spread from land to shallow coastal waters and is now planned for the offshore, deep seabed. Large seafloor areas are being approved for exploration for seafloor mineral deposits, creating an urgent need for regional environmental management plans. Networks of areas where mining and mining impacts are prohibited are key elements of these plans.
View Article and Find Full Text PDFUnderstanding the role of larger-scale processes in modulating the assembly, structure, and dynamics of communities is critical for forecasting the effects of climate-change and managing ecosystems. Developing this comprehensive perspective is difficult though, because species interactions are complex, interdependent, and dynamic through space and time. Typically, experiments focus on tractable subsets of interactions that will be most critical to investigate and explain shifts in communities, but qualitatively base these choices on experience, natural history, and theory.
View Article and Find Full Text PDFThe earth is in the midst of a biodiversity crisis, and projections indicate continuing and accelerating rates of global changes. Future alterations in communities and ecosystems may be precipitated by changes in the abundance of strongly interacting species, whose disappearance can lead to profound changes in abundance of other species, including an increase in extinction rate for some. Nearshore coastal communities are often dependent on the habitat and food resources provided by foundational plant (e.
View Article and Find Full Text PDFWith anthropogenic impacts rapidly advancing into deeper waters, there is growing interest in establishing deep-sea marine protected areas (MPAs) or reserves. Reserve design depends on estimates of connectivity and scales of dispersal for the taxa of interest. Deep-sea taxa are hypothesized to disperse greater distances than shallow-water taxa, which implies that reserves would need to be larger in size and networks could be more widely spaced; however, this paradigm has not been tested.
View Article and Find Full Text PDFAs the climate warms, species that cannot tolerate changing conditions will only persist if they undergo range shifts. Redistribution ability may be particularly variable for benthic marine species that disperse as pelagic larvae in ocean currents. The blue mussel, Mytilus edulis, has recently experienced a warming-related range contraction in the southeastern USA and may face limitations to northward range shifts within the Gulf of Maine where dominant coastal currents flow southward.
View Article and Find Full Text PDFEcological speciation probably plays a more prominent role in diversification than previously thought, particularly in marine ecosystems where dispersal potential is great and where few obvious barriers to gene flow exist. This may be especially true in the deep sea where allopatric speciation seems insufficient to account for the rich and largely endemic fauna. Ecologically driven population differentiation and speciation are likely to be most prevalent along environmental gradients, such as those attending changes in depth.
View Article and Find Full Text PDFA molecular phylogeny of Protobranchia, the subclass of bivalve mollusks sister to the remaining Bivalvia, has long proven elusive, because many constituent lineages are deep-sea endemics, which creates methodological challenges for collecting and preserving genetic material. We obtained 74 representatives of all 12 extant protobranch families and investigated the internal phylogeny of this group using sequence data from five molecular loci (16S rRNA, 18S rRNA, 28S rRNA, cytochrome c oxidase subunit I, and histone H3). Model-based and dynamic homology parsimony approaches to phylogenetic reconstruction unanimously supported four major clades of Protobranchia, irrespective of treatment of hypervariable regions in the nuclear ribosomal genes 18S rRNA and 28S rRNA.
View Article and Find Full Text PDFThe deep sea is a vast and essentially continuous environment with few obvious barriers to gene flow. How populations diverge and new species form in this remote ecosystem is poorly understood. Phylogeographical analyses have begun to provide some insight into evolutionary processes at bathyal depths (<3000 m), but much less is known about evolution in the more extensive abyssal regions (>3000 m).
View Article and Find Full Text PDFDramatic shifts in community composition occur between vertical and horizontal rocky surfaces in subtidal environments worldwide, yet the forces mediating this transition are poorly understood. Vertical rock walls are often covered by lush, diverse communities of sessile suspension-feeding invertebrates, while adjacent horizontal substrates are dominated by algae, or corals in the tropics. Multiple factors, including light, sedimentation, water flow, and predation have been proposed to explain this pattern, but experimental tests of these hypotheses are lacking.
View Article and Find Full Text PDFThe deep-sea soft-sediment environment hosts a diverse and highly endemic fauna of uncertain origin. We know little about how this fauna evolved because geographic patterns of genetic variation, the essential information for inferring patterns of population differentiation and speciation are poorly understood. Using formalin-fixed specimens from archival collections, we quantify patterns of genetic variation in the protobranch bivalve Deminucula atacellana, a species widespread throughout the Atlantic Ocean at bathyal and abyssal depths.
View Article and Find Full Text PDFThe deep sea is the largest ecosystem on Earth. Recent exploration has revealed that it supports a highly diverse and endemic benthic invertebrate fauna, yet the evolutionary processes that generate this remarkable species richness are virtually unknown. Environmental heterogeneity, topographic complexity, and morphological divergence all tend to decrease with depth, suggesting that the potential for population differentiation may decrease with depth.
View Article and Find Full Text PDFBathymetric gradients of biodiversity in the deep-sea benthos constitute a major class of large-scale biogeographic phenomena. They are typically portrayed and interpreted as variation in alpha diversity (the number of species recovered in individual samples) along depth transects. Here, we examine the depth ranges of deep-sea gastropods and bivalves in the eastern and western North Atlantic.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2004
The number of species coexisting in ecological communities must be a consequence of processes operating on both local and regional scales. Although a great deal of experimental work has been devoted to local causes of diversity, little is known about the effects of regional processes on local diversity and how they contribute to global diversity patterns in marine systems. We tested the effects of latitude and the richness of the regional species pool on the species richness of local epifaunal invertebrate communities by sampling the diversity of local sites in 12 independent biogeographic regions from 62 degrees S to 63 degrees N latitude.
View Article and Find Full Text PDFThe shift to smaller body size in marine invertebrates at the deep-sea threshold and size-depth clines within the deep-sea ecosystem are global biogeographic phenomena that remain poorly understood. We present the first standardized measurements of larval and adult size among ecologically and phylogenetically similar species across a broad and continuous depth range, using the largest family of deep-sea gastropods (the Turridae). Size at all life stages increases significantly with depth from the upper bathyal region to the abyssal plain.
View Article and Find Full Text PDFThe intertidal snail Nucella lapillus exhibits considerable variation in shell color both within and between populations differentially exposed to wave action. Populations from high-wave-energy shores tended to be highly polymorphic and were dominated by pigmented morphs (especially brown), while those at more sheltered locations exhibited less polymorphism and were predominantly white. Field and laboratory experiments were conducted to determine the role of physiological stress and selective predation in maintaining the observed distribution of color morphs.
View Article and Find Full Text PDFField and laboratory experiments were used to investigate the variation and phenotypic plasticity in the adhesive abilities of the intertidal snail Nucella lapillus between high- and low-wave-energy environments. Whelks from an exposed coast produced a larger pedal surface area and were more resistant to dislodgement than were similar-sized individuals from a protected shore. Tenacity (g/cm ) was similar between individuals from exposed and protected shores, indicating that variation in resisting dislodgement was solely a function of pedal surface area.
View Article and Find Full Text PDF