Given the tubal origin of high-grade serous ovarian cancer (HGSC), we sought to investigate intrauterine lavage (IUL) as a novel method of biomarker detection. IUL and serum samples were collected from patients with HGSC or benign pathology. Although CA-125 and HE4 concentrations were significantly higher in IUL samples compared to serum, they were similar between IUL samples from patients with HGSC vs benign conditions.
View Article and Find Full Text PDFRubber band ligation is a commonly used method for the removal of tissue abnormalities. Most often, rubber band ligation is performed to remove internal hemorrhoids unresponsive to first line treatments to avoid surgery. While the procedure is considered safe, patients experience mild to significant pain and discomfort until the tissue sloughs off.
View Article and Find Full Text PDFChirality purification of single-walled carbon nanotubes (SWCNTs) is desirable for applications in many fields, but general utility is currently hampered by low throughput. We discovered a method to obtain single-chirality SWCNT enrichment by the aqueous two-phase extraction (ATPE) method in a single step. To achieve appropriate resolution, a biphasic system of non-ionic tri-block copolymer surfactant is varied with an ionic surfactant.
View Article and Find Full Text PDFOne of the major hurdles faced in tissue engineering is the inability to monitor and control the function of an engineered tissue following transplantation. Recent years have seen major developments in the field by integrating electronics within engineered tissues. Previously, the most common types of devices integrated into the body used to be pacemakers and deep brain stimulation electrodes that are stiff and non-compliant; the advent of ultra-thin and flexible electronics has brought forth a significant expansion of the field.
View Article and Find Full Text PDFThe development of scaffolding materials that recapitulate the cellular microenvironment and provide cells with physicochemical cues is crucial for successfully engineering functional tissues that can aid in repairing damaged organs. The use of gold nanoparticles for tissue engineering and regenerative medicine has raised great interest in recent years. In this mini review, we describe the shape-dependent properties of gold nanoparticles, and their versatile use in creating tunable nanocomposite scaffolds with improved mechanical and electrical properties for tissue engineering.
View Article and Find Full Text PDFReplacement of the damaged scar tissue created by a myocardial infarction is the goal of cardiac tissue engineering. However, once the implanted tissue is in place, monitoring its function is difficult and involves indirect methods, while intervention necessarily requires an invasive procedure and available medical attention. To overcome this, methods of integrating electronic components into engineered tissues have been recently presented.
View Article and Find Full Text PDFThe capability to on-line sense tissue function, provide stimulation to control contractility and efficiently release drugs within an engineered tissue microenvironment may enhance tissue assembly and improve the therapeutic outcome of implanted engineered tissues. To endow cardiac patches with such capabilities we developed elastic, biodegradable, electronic scaffolds. The scaffolds were composed of electrospun albumin fibers that served as both a substrate and a passivation layer for evaporated gold electrodes.
View Article and Find Full Text PDFAs cardiac disease takes a higher toll with each passing year, the need for new therapies to deal with the scarcity in heart donors becomes ever more pressing. Cardiac tissue engineering holds the promise of creating functional replacement tissues to repair heart tissue damage. In an attempt to bridge the gap between the lab and clinical realization, the field has made major strides.
View Article and Find Full Text PDFThe field of cardiac tissue engineering aims at replacing the scar tissue created after a patient has suffered from a myocardial infarction. Various technologies have been developed toward fabricating a functional engineered tissue that closely resembles that of the native heart. While the field continues to grow and techniques for better tissue fabrication continue to emerge, several hurdles still remain to be overcome.
View Article and Find Full Text PDFIn cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation.
View Article and Find Full Text PDFIn cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold.
View Article and Find Full Text PDFUnlike lytic phages, temperate phages that enter lysogeny maintain a long-term association with their bacterial host. In this context, mutually beneficial interactions can evolve that support efficient reproduction of both phages and bacteria. Temperate phages are integrated into the bacterial chromosome as large DNA insertions that can disrupt gene expression, and they may pose a fitness burden on the cell.
View Article and Find Full Text PDFCoiled perimysial fibers within the heart muscle provide it with the ability to contract and relax efficiently. Here, we report on a new nanocomposite scaffold for cardiac tissue engineering, integrating coiled electrospun fibers with gold nanoparticles. Cultivation of cardiac cells within the hybrid scaffolds promoted cell organization into elongated and aligned tissues generating a strong contraction force, high contraction rate and low excitation threshold.
View Article and Find Full Text PDFGold nanostructures can be incorporated into macroporous scaffolds to increase the matrix conductivity and enhance the electrical signal transfer between cardiac cells. Here we report a simple approach for fabricating 3-dimensional (3D) gold nanoparticle (NP)-based fibrous scaffolds, for engineering functional cardiac tissues generating a strong contraction force. A polycaprolactone-gelatin mixture was electrospun to obtain fibrous scaffolds with an average fiber diameter of 250 nm.
View Article and Find Full Text PDFRecapitulation of the cellular microenvironment of the heart, which promotes cell contraction, remains a key challenge in cardiac tissue engineering. We report here on our work, where for the first time, a 3-dimensional (3D) spring-like fiber scaffold was fabricated, successfully mimicking the coiled perimysial fibers of the heart. We hypothesized that since in vivo straightening and re-coiling of these fibers allow stretching and contraction of the myocardium in the direction of the cardiomyocytes, such a scaffold can support the assembly of a functional cardiac tissue capable of generating a strong contraction force.
View Article and Find Full Text PDF