Large amounts of net electrical charge are known to accumulate on inhaled aerosols during their generation using commonly-available inhalers. This effect often leads to superfluous deposition in the extra-thoracic airways at the cost of more efficient inhalation therapy. Since the electrostatic force is inversely proportional to the square of the distance between an aerosol and the airway wall, its role has long been recognized as potentially significant in the deep lungs.
View Article and Find Full Text PDFThere exists an ongoing need to improve the validity and accuracy of computational fluid dynamics (CFD) simulations of turbulent airflows in the extra-thoracic and upper airways. Yet, a knowledge gap remains in providing experimentally-resolved 3D flow benchmarks with sufficient data density and completeness for useful comparison with widely-employed numerical schemes. Motivated by such shortcomings, the present work details to the best of our knowledge the first attempt to deliver in vitro-in silico correlations of 3D respiratory airflows in a generalized mouth-throat model and thereby assess the performance of Large Eddy Simulations (LES) and Reynolds-Averaged Numerical Simulations (RANS).
View Article and Find Full Text PDFThe interlayer relative dielectric constant, , of 2-dimensional (2D) materials in general and graphitic materials in particular is one of their most important physical properties, especially for electronic applications. In this work, we study the electromechanical actuation of nano-scale graphitic contacts. We find that beside the adhesive forces there are capacitive forces that scale parabolically with the potential drop across the sheared interface.
View Article and Find Full Text PDF