Alzheimer's disease (AD) disrupts behavioral circadian rhythms, but its effects on molecular rhythms in the human brain are poorly understood. Using single-nucleus RNA sequencing from post-mortem cortical samples, we informatically estimated the relative circadian phases of 409 persons with and without AD dementia. We then reconstructed circadian expression profiles across cell types.
View Article and Find Full Text PDFWhile circadian rhythm disruption may promote neurodegenerative disease, how aging and neurodegenerative pathology impact circadian gene expression patterns in different brain cell types is unknown. Here, we used translating ribosome affinity purification methods to define the circadian translatomes of astrocytes, microglia, and bulk cerebral cortex, in healthy mouse brain and in the settings of amyloid-beta plaque pathology or aging. Our data reveal that glial circadian translatomes are highly cell type-specific and exhibit profound, context-dependent reprogramming of rhythmic transcripts in response to amyloid pathology or aging.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDA) is a lethal cancer characterized by a poor outcome and an increasing incidence. A significant majority (>80%) of newly diagnosed cases are deemed unresectable, leaving chemotherapy as the sole viable option, though with only moderate success. This necessitates the identification of improved therapeutic options for PDA.
View Article and Find Full Text PDFStudies in shift workers and model organisms link circadian disruption to breast cancer. However, molecular circadian rhythms in noncancerous and cancerous human breast tissues and their clinical relevance are largely unknown. We reconstructed rhythms informatically, integrating locally collected, time-stamped biopsies with public datasets.
View Article and Find Full Text PDFAtopic dermatitis (AD) is symptomatically worse in the evening, but the mechanism driving nocturnal eczema remains elusive. Our objective was to determine the circadian rhythm of skin barrier function measured by transepidermal water loss (TEWL) in AD patients and explore the molecular underpinnings. A pilot study was performed on a diverse group of AD ( = 4) and control ( = 2) young patients.
View Article and Find Full Text PDFIn adulthood, sleep-wake rhythms are one of the most prominent behaviors under circadian control. However, during early life, sleep is spread across the 24-hour day. The mechanism through which sleep rhythms emerge, and consequent advantage conferred to a juvenile animal, is unknown.
View Article and Find Full Text PDFStudies in shift workers and model organisms link circadian disruption to breast cancer. However, molecular rhythms in non-cancerous and cancerous human breast tissues are largely unknown. We reconstructed rhythms informatically, integrating locally collected, time-stamped biopsies with public datasets.
View Article and Find Full Text PDFWe argue that the study of single-cell subcellular organelle omics is needed to understand and regulate cell function. This requires and is being enabled by new technology development.
View Article and Find Full Text PDFStudy Objectives: Genetics impacts sleep, yet, the molecular mechanisms underlying sleep regulation remain elusive. In this study, we built machine learning models to predict sleep genes based on their similarity to genes that are known to regulate sleep.
Methods: We trained a prediction model on thousands of published datasets, representing circadian, immune, sleep deprivation, and many other processes, using a manually curated list of 109 sleep genes.
Both critical illness and current care have been hypothesized to upset daily rhythms and impair molecular circadian function. However, the influence of critical illness on clock function in different tissues and on circadian output genes are unknown. Here we evaluate the effect of critical care and illness on transcription, focusing on the functional organization of the core circadian oscillator.
View Article and Find Full Text PDFSudden cardiac death (SCD) is the sudden, unexpected death due to abrupt loss of heart function secondary to cardiovascular disease. In certain populations living with cardiovascular disease, SCD follows a distinct 24-hour pattern in occurrence, suggesting day/night rhythms in behavior, the environment, and endogenous circadian rhythms result in daily spans of increased vulnerability. The National Heart, Lung, and Blood Institute convened a workshop, Understanding Circadian Mechanisms of Sudden Cardiac Death to identify fundamental questions regarding the role of the circadian rhythms in SCD.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
November 2021
Sudden cardiac death (SCD), the unexpected death due to acquired or genetic cardiovascular disease, follows distinct 24-hour patterns in occurrence. These 24-hour patterns likely reflect daily changes in arrhythmogenic triggers and the myocardial substrate caused by day/night rhythms in behavior, the environment, and endogenous circadian mechanisms. To better address fundamental questions regarding the circadian mechanisms, the National Heart, Lung, and Blood Institute convened a workshop, Understanding Circadian Mechanisms of Sudden Cardiac Death.
View Article and Find Full Text PDFCitation: Circadian rhythm sleep-wake disorders result from the lack of synchronization between endogenous circadian rhythms and daily environmental or behavioral cycles. Current treatment of circadian rhythm sleep-wake disorders relies on strengthening normal zeitgebers, or temporal cues, through the combination of strict behavioral modification, controlled light exposure, and supplemental melatonin or melatonin receptor agonists. These therapies can be difficult to maintain and are supported with only limited clinical outcome data.
View Article and Find Full Text PDFCircadian disruption influences metabolic health. Metabolism modulates circadian function. However, the mechanisms coupling circadian rhythms and metabolism remain poorly understood.
View Article and Find Full Text PDFRecent discoveries demonstrate a critical role for circadian rhythms and sleep in immune system homeostasis. Both innate and adaptive immune responses - ranging from leukocyte mobilization, trafficking, and chemotaxis to cytokine release and T cell differentiation -are mediated in a time of day-dependent manner. The National Institutes of Health (NIH) recently sponsored an interdisciplinary workshop, "Sleep Insufficiency, Circadian Misalignment, and the Immune Response," to highlight new research linking sleep and circadian biology to immune function and to identify areas of high translational potential.
View Article and Find Full Text PDFDuring sleep, animals do not eat, reproduce or forage. Sleeping animals are vulnerable to predation. Yet, the persistence of sleep despite evolutionary pressures, and the deleterious effects of sleep deprivation, indicate that sleep serves a function or functions that cannot easily be bypassed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2018
Proc Natl Acad Sci U S A
November 2018
The discovery that half of the mammalian protein-coding genome is regulated by the circadian clock has clear implications for medicine. Recent studies demonstrated that the circadian clock influences therapeutic outcomes in human heart disease and cancer. However, biological time is rarely given clinical consideration.
View Article and Find Full Text PDFThe effectiveness of Roux-en-Y gastric bypass (RYGB) against obesity and its comorbidities has generated excitement about developing new, less invasive treatments that use the same molecular mechanisms. Although controversial, RYGB-induced improvement of metabolic function may not depend entirely upon weight loss. To elucidate the differences between RYGB and dieting, we studied several individual organ molecular responses and generated an integrative, interorgan view of organismal physiology.
View Article and Find Full Text PDFGenome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze.
View Article and Find Full Text PDF