Purpose: Cancer drug development remains a critical but challenging process that affects millions of patients and their families. Using biomedical informatics and artificial intelligence (AI) approaches, we assessed the regulatory and translational research landscape defining successful first-in-class drugs for patients with cancer.
Methods: This is a retrospective observational study of all novel first-in-class drugs approved by the US Food and Drug Administration (FDA) from 2018 to 2022, stratified by cancer versus noncancer drugs.
The ICH E17 guidelines (2014-2017) on Multiregional Clinical Trials (MRCT) was a joint effort by the regulators and industry to facilitate simultaneous global drug development and registration through taking a strategic approach for clinical trials. In other words, the objective was to reduce the time it takes to bringing medications to patients around the world through minimizing unnecessary duplication of local or regional studies, which may add the regulatory burden to cost and time of bringing new therapies to patients. Under the auspices of ICH, training materials were created and provided to various stakeholders.
View Article and Find Full Text PDFDuring the metabolic characterization of compound I, 2-{6-cyano-3-[(2,2-difluoro-2-pyridin-2-ylethyl)amino]-2-oxopyrazin-1(2H)-yl]-N-[(3-fluoropyridin-2-yl)methyl]acetamide, evidence was obtained for extensive oxidative bioactivation of the pyrazinone ring system and some of the resulting metabolites were apparently devoid of the cyano moiety. Two assays, a spectrophotometric and a high-pressure liquid chromatography (HPLC) pre-column derivatization method, were evaluated for their ability to detect and quantify cyanide that is metabolically generated from liver microsomal incubations. When I was incubated (45 microM) in the presence of NADPH-fortified human liver microsomes for 2h, 7.
View Article and Find Full Text PDFCompound I [3-[5-(4-methanesulfonyl-piperazin-1-ylmethyl)-1H-indol-2-yl]-1H-quinolin-2-one] is a potent inhibitor of human kinase insert domain-containing receptor (KDR kinase), which is under investigation for the treatment of cancer. Bile duct-cannulated male beagle dogs were administered 6 mg/kg compound I q.d.
View Article and Find Full Text PDFOptimization of a previously reported thrombin inhibitor, 9-hydroxy-9-fluorenylcarbonyl-l-prolyl-trans-4-aminocyclohexylmethylamide (1), by replacing the aminocyclohexyl P1 group provided a new lead structure, 9-hydroxy-9-fluorenylcarbonyl-l-prolyl-2-aminomethyl-5-chlorobenzylamide (2), with improved potency (K(i) = 0.49 nM for human thrombin, 2x APTT = 0.37 microM in human plasma) and pharmacokinetic properties (F = 39%, iv T(1/2) = 13 h in dogs).
View Article and Find Full Text PDFDrug Metab Dispos
November 2003
Thrombin is a serine protease that plays a key role in the blood coagulation cascade. Compound I [2-[6-chloro-3-[(2,2-difluoro-2-pyridin-2-ylethyl)amino]-2-oxopyrazin-1(2H)-yl]-N-[(3-fluoropyridin-2-yl)methyl]acetamide] is a potent, selective, and orally bioavailable thrombin inhibitor that is being studied as a possible anticoagulant. Biotransformation studies in rats revealed that 84% of an i.
View Article and Find Full Text PDFBioorg Med Chem Lett
April 2003
In this manuscript we demonstrate that a modification principally directed toward the improvement of the aqueous solubility (i.e., introduction a P3 pyridine N-oxide) of the previous lead compound afforded a new series of potent orally bioavailable P1 N-benzylamide thrombin inhibitors.
View Article and Find Full Text PDFCompound I, (2-[3-[(2,2-difluoro-2(2-pyridyl)ethyl)amino]-6-methyl-2-oxohydropyrazinyl]-N-[(3-fluoro(2-pyridyl))methyl]acetamide, is a potent competitive inhibitor of thrombin that reacts stoichiometrically with the protease. Compounds of this class possess therapeutic potential as anticoagulation agents. During the metabolic characterization of compound I, evidence was obtained for extensive metabolic activation of the pyrazinone ring system.
View Article and Find Full Text PDFRecent efforts in the field of thrombin inhibitor research have focused on the identification of compounds with good oral bioavailability and pharmacokinetics. In this manuscript we describe a metabolism-based approach to the optimization of the 3-(2-phenethylamino)-6-methylpyrazinone acetamide template (e.g.
View Article and Find Full Text PDF