The implementation of a sustainable bio-based economy is considered a top priority today. There is no doubt about the necessity to produce renewable bioenergy and bio-sourced chemicals to replace fossil-derived compounds. Under this scenario, strong efforts have been devoted to efficiently use organic waste as feedstock for biohydrogen production via dark fermentation.
View Article and Find Full Text PDFThis work assesses the capacity of a microalgae-based system to remove three highly to medium polar pesticides typically found in freshwater: acetamiprid, bentazone, and propanil. Degradation of the pesticides was firstly studied individually at batch lab-scale reactors and abiotic and heated-killed controls were employed to clarify their removal pathways. At lab-scale, propanil and acetamiprid were completely removed after 7 days whereas bentazone was not removed.
View Article and Find Full Text PDFThis case study is part of a circular bioeconomy project for a winery company aiming to integrate a microalgae-based system within the existing facilities of the winery WWTP, promoting nutrient recovery and transformation into valuable products and bioenergy. Microalgae were used for wastewater treatment, removing N-NH (97%) and P-PO (93%). A pilot anaerobic reactor was used for batch anaerobic mono-digestion of secondary sludge (WAS) and for co-digestion of WAS and algal biomass.
View Article and Find Full Text PDFIntegration of microalgae-based systems with conventional wastewater treatment plants provides an effective alternative to waste stream management. In this work, alkaline and enzymatic pretreatments of a microalgal culture mainly constituted by Chlorella sp. and Scenedesmus sp.
View Article and Find Full Text PDFIntensive and extensive use of pesticides has contributed to their wide distribution in soil, air, and water. Due to their detrimental effects on non-target organisms, different technologies have been considered for their removal. In this work, three hydrophobic pesticide active compounds, namely, chlorpyrifos, cypermethrin, and oxadiazon, were selected to study the potential for their removal from aqueous media by a microalgae consortium.
View Article and Find Full Text PDFThe Anaerobic Digestion and Composting Plant of the Vallès Oriental Waste Treatment Centre processes source-selected organic fraction of municipal solid wastes generated in its surrounding area. To promote Circular Economy between Municipal Solid Waste and industrial waste management systems, the Treatment Centre is looking for complementary wastes to be valorised through co-digestion with its main substrate. The study includes waste characterization and a complete treatment cost analysis, that jointly with the biogas potential and the mass balance of the Plant allows to calculate the price of each waste to be treated in the Plant.
View Article and Find Full Text PDF