Publications by authors named "Romero-Arias J"

We present experiments involving oscillating droplets in aqueous cyclodextrin-surfactant solutions. In these experiments, α-cyclodextrin (αCD) and anionic surfactants exhibit remarkable viscoelasticity at the liquid/air interface, with dilatational modulus varying across orders of magnitude. This rheological response depends on the concentrations of different complexes in the solution, particularly of the 2 : 1 inclusion complexes formed by two αCD molecules (αCD), and one surfactant (S).

View Article and Find Full Text PDF

Termites digest wood using Carbohydrate-Active Enzymes (CAZymes) produced by gut bacteria with whom they have cospeciated at geological timescales. Whether CAZymes were encoded in the genomes of their ancestor's gut bacteria and transmitted to modern termites or acquired more recently from bacteria not associated with termites is unclear. We used gut metagenomes from 195 termites and one Cryptocercus, the sister group of termites, to investigate the evolution of termite gut bacterial CAZymes.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer results from complex interactions between internal and external cell processes, leading to continued cell growth and resistance to cell death.
  • The study explores how the cellular microenvironment influences cancer development, focusing specifically on the early stages of pancreatic adenocarcinoma (PanIN 1 and PanIN 2).
  • By creating a model that incorporates gene-regulatory networks and cell communication, the research highlights the role of inflammatory processes and suggests targeting the RAS oncogene as a potential anti-inflammatory strategy to prevent aggressive cancer forms.
View Article and Find Full Text PDF
Article Synopsis
  • - The classification of termites, particularly the diverse Neoisoptera group, needs significant updates due to many incorrectly grouped taxa; researchers propose a new classification based on genomic analyses.
  • - The study identifies seven monophyletic family lineages within Neoisoptera and 18 subfamily lineages in the species-rich Termitidae, including several new subfamilies and the revival of some older ones.
  • - The new classification method is built on clear monophyletic lineages, which enhances its stability and adaptability for future studies, allowing it to incorporate yet-to-be-discovered species easily.
View Article and Find Full Text PDF

We analyzed a quantitative multiscale model that describes the epigenetic dynamics during the growth and evolution of an avascular tumor. A gene regulatory network (GRN) formed by a set of ten genes that are believed to play an important role in breast cancer development was kinetically coupled to the microenvironmental agents: glucose, estrogens, and oxygen. The dynamics of spontaneous mutations was described by a Yule-Furry master equation whose solution represents the probability that a given cell in the tissue undergoes a certain number of mutations at a given time.

View Article and Find Full Text PDF

Sprouting angiogenesis is a core biological process critical to vascular development. Its accurate simulation, relevant to multiple facets of human health, is of broad, interdisciplinary appeal. This study presents an model replicating a microfluidic assay where endothelial cells sprout into a biomimetic extracellular matrix, specifically, a large-pore, low-concentration fibrin-based porous hydrogel, influenced by chemotactic factors.

View Article and Find Full Text PDF

The process of fission and vesicle formation depends on the geometry of the membrane that will split. For instance, a flat surface finds it difficult to form vesicles because of the lack of curved regions where to start the process. Here we show that vesicle formation can be promoted by temperature, by using a membrane phase field model with Gaussian curvature.

View Article and Find Full Text PDF

We present a series of experiments with droplets of aqueous cyclodextrin-surfactant solutions, in which the volume is reduced after the equilibrium spherical shape is reached. The final shape of the drop after this perturbation is found to be dependent on the concentration of inclusion complexes in the bulk of the solution. These inclusion complexes are formed by two cyclodextrin molecules and one surfactat molecule.

View Article and Find Full Text PDF

We propose a three-dimensional mathematical model to describe dynamical processes of membrane fission. The model is based on a phase field equation that includes the Gaussian curvature contribution to the bending energy. With the addition of the Gaussian curvature energy term numerical simulations agree with the predictions that tubular shapes can break down into multiple vesicles.

View Article and Find Full Text PDF

A recent surface rheological study has shown that aqueous solutions of α-cyclodextrin (αCD) with anionic surfactants (S) display a remarkable viscoelasticity at the liquid/air interface, which has not been observed in similar systems. The dilatational modulus is various orders of magnitude larger than those for the binary mixtures αCD + water and S + water. The rheological response has been qualitatively related to the bulk distribution of species, the 2 : 1 inclusion complexes (αCD2 : S) playing a fundamental role.

View Article and Find Full Text PDF

The anatomy of the workers' digestive tube is essential in taxonomical studies of soil-feeding Apicotermitinae termites, especially in soldierless lineages. Two structures, the mesenteric-proctodeal junction and the enteric valve, have long been important to distinguish genera and species. By contrast, the gizzard (proventriculus) has been almost ignored by taxonomists because of its generally regressed state in soil-feeding termites.

View Article and Find Full Text PDF

Here we discuss the formation of phyllotactic patterns in the shoot apical meristem (SAM) of plants, where the spatial distribution of the phytohormone auxin determines phyllotaxis in a domain that is growing and changing in time. We assume that the concentration of auxin modifies the mechanical properties of the domain and that the mechanical stress field in the SAM orients the flux of auxin. To study this problem we propose a mechanism for pattern formation in growing domains with variable curvature.

View Article and Find Full Text PDF

Intracellular polarisation of auxin efflux carriers is crucial for understanding how auxin gradients form in plants. The polarisation dynamics of auxin efflux carriers PIN-FORMED (PIN) depends on both biomechanical forces as well as chemical, molecular and genetic factors. Biomechanical forces have shown to affect the localisation of PIN transporters to the plasma membrane.

View Article and Find Full Text PDF

Stem cells are identical in many scales, they share the same molecular composition, DNA, genes, and genetic networks, yet they should acquire different properties to form a functional tissue. Therefore, they must interact and get some external information from their environment, either spatial (dynamical fields) or temporal (lineage). In this paper we test to what extent coupled chemical and physical fields can underlie the cell's positional information during development.

View Article and Find Full Text PDF

A central issue in developmental biology is to uncover the mechanisms by which stem cells maintain their capacity to regenerate, yet at the same time produce daughter cells that differentiate and attain their ultimate fate as a functional part of a tissue or an organ. In this paper we propose that, during development, cells within growing organs obtain positional information from a macroscopic physical field that is produced in space while cells are proliferating. This dynamical interaction triggers and responds to chemical and genetic processes that are specific to each biological system.

View Article and Find Full Text PDF

In this paper we propose a model to describe the mechanisms by which undifferentiated cells attain gene configurations underlying cell fate determination during morphogenesis. Despite the complicated mechanisms that surely intervene in this process, it is clear that the fundamental fact is that cells obtain spatial and temporal information that bias their destiny. Our main hypothesis assumes that there is at least one macroscopic field that breaks the symmetry of space at a given time.

View Article and Find Full Text PDF

We present a nonlinear model that allows exploration of the relationship between energy relaxation, thermal conductivity and the excess of low-frequency vibrational modes (LFVMs) that are present in glasses. The model is a chain of the Fermi-Pasta-Ulam (FPU) type, with nonlinear second neighbour springs added at random. We show that the time for relaxation is increased as LFVMs are removed, while the thermal conductivity diminishes.

View Article and Find Full Text PDF

Glasses exist because they are not able to relax in a laboratory time scale toward the most stable structure: a crystal. At the same time, glasses present low-frequency vibrational-mode (LFVM) anomalies. We explore in a systematic way how the number of such modes influences thermal relaxation in one-dimensional models of glasses.

View Article and Find Full Text PDF

Background: The increase of the growth hormone (GH) during exercise is known although the relationship of this response with other hormones, the type and intensity of the exercise, nutritional state and with the degree of training are reasons for discussion. The aim of this investigation was to study the response of the HG on a group of young adults with different degrees of training, according to the maximum consumption of oxygen (VO2 max) achieved over a short period of time.

Methods: Thirty-nine healthy subjects who underwent maximum effort on the treadmill were grouped according to VO2 max reached (less than 3,000 ml/min; 3,000-4,500 ml/min and greater than 4,500 ml/min).

View Article and Find Full Text PDF