Publications by authors named "Romeo Juge"

Magnetic skyrmions are topological spin textures that hold great promise as nanoscale information carriers in non-volatile memory and logic devices. While room-temperature magnetic skyrmions and their current-induced motion were recently demonstrated, the stray field resulting from their finite magnetisation and their topological charge limit their minimum size and reliable motion. Antiferromagnetic skyrmions allow to lift these limitations owing to their vanishing magnetisation and net zero topological charge, promising ultra-small and ultra-fast skyrmions.

View Article and Find Full Text PDF

Magnetic skyrmions are deemed to be the forerunners of novel spintronic memory and logic devices. While their observation and their current-driven motion at room temperature have been demonstrated, certain issues regarding their nucleation, stability, pinning, and skyrmion Hall effect still need to be overcome to realize functional devices. Here, we demonstrate that focused He-ion-irradiation can be used to create and guide skyrmions in racetracks.

View Article and Find Full Text PDF

Electric control of magnetism is a prerequisite for efficient and low-power spintronic devices. More specifically, in heavy metal-ferromagnet-insulator heterostructures, voltage gating has been shown to locally and dynamically tune magnetic properties such as interface anisotropy and saturation magnetization. However, its effect on interfacial Dzyaloshinskii-Moriya Interaction (DMI), which is crucial for the stability of magnetic skyrmions, has been challenging to achieve and has not been reported yet for ultrathin films.

View Article and Find Full Text PDF