Publications by authors named "Romeo Bonnet"

Mimicking and extending the gating properties of biological pores is of paramount interest for the fabrication of membranes that could be used in filtration or drug processing. Here, we build a selective and switchable nanopore for macromolecular cargo transport. Our approach exploits polymer graftings within artificial nanopores to control the translocation of biomolecules.

View Article and Find Full Text PDF

We report electron transport measurements through nano-scale devices consisting of 1 to 3 Prussian blue analog (PBA) nanocrystals connected between two electrodes. We compare two types of cubic nanocrystals, CsCoIIIFeII (15 nm) and CsNiIICrIII (6 nm), deposited on highly oriented pyrolytic graphite and contacted by conducting-AFM. The measured currents show an exponential dependence with the length of the PBA nano-device (up to 45 nm), with low decay factors β, in the range 0.

View Article and Find Full Text PDF

Transporting quantum information such as the spin information over micrometric or even millimetric distances is a strong requirement for the next-generation electronic circuits such as low-voltage spin-logic devices. This crucial step of transportation remains delicate in nontopologically protected systems because of the volatile nature of spin states. Here, a beneficial combination of different phenomena is used to approach this sought-after milestone for the beyond-Complementary Metal Oxide Semiconductor (CMOS) technology roadmap.

View Article and Find Full Text PDF

The quantum interaction between molecules and electrode materials at molecule/electrode interfaces is a major ingredient in the electron transport properties of organic junctions. Driven by the coupling strength between the two materials, it results mainly in the broadening and energy shift of the interacting molecular orbitals. Using new electrode materials, such as the recently developed semi-conducting two-dimensional nanomaterials, has become a significant advancement in the field of molecular/organic electronics that opens new possibilities for controlling the interfacial electronic properties and thus the charge injection properties.

View Article and Find Full Text PDF

Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionflbl1vpl8klsmo9951iv7pbna3sjiukl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once