Expert Opin Ther Targets
September 2024
Introduction: Inhibition of the enzymatic function of HDAC6 is currently being explored in clinical trials ranging from peripheral neuropathies to cancers. Advances in selective HDAC6 inhibitor discovery allowed studying highly efficacious brain penetrant and peripheral restrictive compounds for treating PNS and CNS indications.
Areas Covered: This review explores the multifactorial role of HDAC6 in cells, the common pathological hallmarks of PNS and CNS disorders, and how HDAC6 modulates these mechanisms.
Myeloid cell leukemia-1 (MCL-1) is a member of the antiapoptotic BCL-2 proteins family and a key regulator of mitochondrial homeostasis. Overexpression of MCL-1 is found in many cancer cells and contributes to tumor progression, which makes it an attractive therapeutic target. Pursuing our previous study of macrocyclic indoles for the inhibition of MCL-1, we report herein the impact of both pyrazole and indole isomerism on the potency and overall properties of this family of compounds.
View Article and Find Full Text PDFAvoidance of apoptosis is critical for the development and sustained growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 family of proteins which is overexpressed in many cancers. Upregulation of Mcl-1 in human cancers is associated with high tumor grade, poor survival, and resistance to chemotherapy.
View Article and Find Full Text PDFWe recently disclosed a set of heteroaryl-fused piperazine inhibitors of BACE1 that combined nanomolar potency with good intrinsic permeability and low Pgp-mediated efflux. Herein we describe further work on two prototypes of this family of inhibitors aimed at modulating their basicity and reducing binding to the human ether-a-go-go-related gene (hERG) channel. This effort has led to the identification of compound , a highly potent (hAβ42 cell IC = 1.
View Article and Find Full Text PDFA common challenge for medicinal chemists is to reduce the pK of strongly basic groups' conjugate acids into a range that preserves the desired effects, usually potency and/or solubility, but avoids undesired effects like high volume of distribution (V), limited membrane permeation, and off-target binding to, notably, the hERG channel and monoamine receptors. We faced this challenge with a 3,4,5,6-tetrahydropyridine-2-amine scaffold harboring an amidine, a key structural component of potential inhibitors of BACE1, the rate-limiting enzyme in the production of Aβ species that make up amyloid plaques in Alzheimer's disease. In our endeavor to balance potency with desirable properties to achieve brain penetration, we introduced a diverse set of groups in beta position of the amidine that modulate logD, PSA and pK.
View Article and Find Full Text PDFNitriles are recurring motifs in bioactive molecules and versatile functional groups in synthetic chemistry. Despite recent progress, direct introduction of a nitrile moiety in heteroarenes remains challenging. Recent developments in electrochemical reactions pave the way to more practical cyanation protocols.
View Article and Find Full Text PDFβ-Site amyloid precursor protein-cleaving enzyme 1 (BACE1) is considered to be a promising target for treating Alzheimer's disease. However, all clinical BACE1 inhibitors have failed due to lack of efficacy, and some have even led to cognitive worsening. Recent evidence points to the importance of avoiding BACE2 inhibition along with careful dose titration.
View Article and Find Full Text PDFThe discovery of a novel 2-aminotetrahydropyridine class of BACE1 inhibitors is described. Their pK and lipophilicity were modulated by a pending sulfonyl group, while good permeability and brain penetration were achieved via intramolecular hydrogen bonding. BACE1 selectivity over BACE2 was achieved in the S3 pocket by a novel bicyclic ring system.
View Article and Find Full Text PDFBACE1 is an attractive target for disease-modifying treatment of Alzheimer's disease. BACE2, having high homology around the catalytic site, poses a critical challenge to identifying selective BACE1 inhibitors. Recent evidence indicated that BACE2 has various roles in peripheral tissues and the brain, and therefore, the chronic use of nonselective inhibitors may cause side effects derived from BACE2 inhibition.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is often a limiting factor for getting drugs in the brain. Bypassing the BBB by intranasal (IN), or also called nose to brain (NTB), route is an interesting and frequently investigated concept for brain drug delivery. However, despite the body of evidence for IN drug delivery in literature over the last decades, reproducibility and interpretation of animal data remain challenging.
View Article and Find Full Text PDFExpert Opin Ther Pat
January 2021
Introduction: Inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) has been extensively pursued as potential disease-modifying treatment for Alzheimer's disease (AD). Clinical failures with BACE inhibitors have progressively raised the bar forever cleaner candidates with reduced cardiovascular liability, toxicity risk, and increased selectivity over cathepsin D (CatD) and BACE2.
Areas Covered: This review provides an overview of patented BACE1 inhibitors between 2011 and 2020 per pharmaceutical company or research group and highlights the progress that was made in dialing out toxicity liabilities.
Purpose: The accumulation of misfolded tau is a common feature of several neurodegenerative disorders, with Alzheimer's disease (AD) being the most common. Earlier we identified JNJ-64326067, a novel isoquinoline derivative with high affinity and selectivity for tau aggregates from human AD brain. We report the dosimetry of [F] JNJ-64326067 and results of a proof-of-concept study comparing subjects with probable Alzheimer's disease to age-matched healthy controls.
View Article and Find Full Text PDFSince its discovery in 1999, BACE-1, a membrane anchored aspartyl protease expressed primarily in the CNS, has been the target of numerous medicinal chemistry research programs. These efforts have produced highly potent inhibitors with nanomolar affinity and ever-increasing structural complexity. However, only a handful of these molecules have been able to combine in vitro potency with CNS permeability and progressed to the clinic.
View Article and Find Full Text PDFDespite several years of research, only a handful of β-secretase (BACE) 1 inhibitors have entered clinical trials as potential therapeutics against Alzheimer's disease. The intrinsic basic nature of low molecular weight, amidine-containing BACE 1 inhibitors makes them far from optimal as central nervous system drugs. Herein we present a set of novel heteroaryl-fused piperazine amidine inhibitors designed to lower the basicity of the key, enzyme binding, amidine functionality.
View Article and Find Full Text PDFIn Alzheimer's disease, the density and spread of aggregated tau protein track well with neurodegeneration and cognitive decline, making the imaging of aggregated tau a compelling biomarker. A structure-activity relationship exploration around an isoquinoline hit, followed by an exploration of tolerated fluorination positions, allowed us to identify 9 (JNJ-64326067), a potent and selective binder to aggregated tau with a favorable pharmacokinetic profile and no apparent off-target binding. This was confirmed in rat and monkey positron emission tomography studies using [F]9.
View Article and Find Full Text PDFβ-Site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors offer the potential of disease-modifying treatment for Alzheimer's disease (AD). Since 2014, major breakthroughs have appeared in the field of BACE1 inhibitors. This review provides an overview of amidine-based BACE1 inhibitors between 2014 and 2018.
View Article and Find Full Text PDFIn previous studies, the introduction of electron withdrawing groups to 1,4-oxazine BACE1 inhibitors reduced the p K of the amidine group, resulting in compound 2 that showed excellent in vivo efficacy, lowering Aβ levels in brain and CSF. However, a suboptimal cardiovascular safety margin, based on QTc prolongation, prevented further progression. Further optimization resulted in the replacement of the 2-fluoro substituent by a CF-group, which reduced hERG inhibition.
View Article and Find Full Text PDFThe role of medicinal chemistry has changed over the past 10 years. Chemistry had become one step in a process; funneling the output of high-throughput screening (HTS) on to the next stage. The goal to identify the ideal clinical compound remains, but the means to achieve this have changed.
View Article and Find Full Text PDFAn approach to identify β-secretase 1 (BACE1) fragment binders that do not interact with the catalytic aspartate dyad is presented. A ThermoFluor (thermal shift) and a fluorescence resonance energy transfer enzymatic screen on the soluble domain of BACE1, together with a surface plasmon resonance (SPR) screen on the soluble domain of BACE1 and a mutant of one catalytic Asp (D32N), were run in parallel. Fragments that were active in at least two of these assays were further confirmed using one-dimensional NMR (WaterLOGSY) and SPR binding competition studies with peptidic inhibitor OM99-2.
View Article and Find Full Text PDFIn this study, we have synthesized and evaluated F-JNJ64349311, a tracer with high affinity for aggregated tau (inhibition constant value, 8 nM) and high (≥500×) in vitro selectivity for tau over β-amyloid, in comparison with the benchmark compound F-AV1451 (F-T807) in mice, rats, and a rhesus monkey. In vitro binding characteristics were determined for Alzheimer's disease, progressive supranuclear palsy, and corticobasal degeneration patient brain tissue slices using autoradiography studies. Ex vivo biodistribution studies were performed in mice.
View Article and Find Full Text PDFA mini-HTS on 4000 compounds selected using 2D fragment-based similarity and 3D pharmacophoric and shape similarity to known selective tau aggregate binders identified N-(6-methylpyridin-2-yl)quinolin-2-amine 10 as a novel potent binder to human AD aggregated tau with modest selectivity versus aggregated β-amyloid (Aβ). Initial medicinal chemistry efforts identified key elements for potency and selectivity, as well as suitable positions for radiofluorination, leading to a first generation of fluoroalkyl-substituted quinoline tau binding ligands with suboptimal physicochemical properties. Further optimization toward a more optimal pharmacokinetic profile led to the discovery of 1,5-naphthyridine 75, a potent and selective tau aggregate binder with potential as a tau PET tracer.
View Article and Find Full Text PDFIntroduction: The cyclic nucleotides cAMP and cGMP are ubiquitous intracellular second messengers regulating a large variety of biological processes. The intracellular concentration of these biologically relevant molecules is modulated by the activity of phosphodiesterases (PDEs), a class of enzymes that is grouped in 11 families. The expression of PDEs is tissue- and cell-specific allowing spatiotemporal integration of multiple signaling cascades.
View Article and Find Full Text PDFTwo benzazaborinine analogues of propranolol were synthesized and extensively profiled in vitro and in vivo. These analogues showed potency and physicochemical and in vitro ADME-tox profiles comparable to propranolol. In addition, both benzazaborinine analogues showed excellent bioavailability and brain penetration following subcutaneous administration in a pharmacokinetic study in rats.
View Article and Find Full Text PDF