Publications by authors named "Romaric Vincent"

Here, we demonstrate that lens-free video microscopy enables us to simultaneously capture the kinetics of thousands of cells directly inside the incubator and that it is possible to monitor and quantify single cells along several cell cycles. We describe the full protocol used to monitor and quantify a HeLa cell culture for 2.7 days.

View Article and Find Full Text PDF

Cells in tissues can organize into a broad spectrum of structures according to their function. Drastic changes of organization, such as epithelial-mesenchymal transitions or the formation of spheroidal aggregates, are often associated either to tissue morphogenesis or to cancer progression. Here, we study the organization of cell colonies by means of simulations of self-propelled particles with generic cell-like interactions.

View Article and Find Full Text PDF

A general trait of cell monolayers is their ability to exert contractile stresses on their surroundings. The scaling laws that link such contractile stresses with the size and geometry of constituent cells remain largely unknown. In this Letter, we show that the active tension of an epithelial monolayer scales linearly with the size of the constituent cells, a surprisingly simple relationship.

View Article and Find Full Text PDF

Unlabelled: Adherent cells exert traction forces on their substrate, and these forces play important roles in biological functions such as mechanosensing, cell differentiation and cancer invasion. The method of choice to assess these active forces is traction force microscopy (TFM). Despite recent advances, TFM remains highly sensitive to measurement noise and exhibits limited spatial resolution.

View Article and Find Full Text PDF

The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells' cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres.

View Article and Find Full Text PDF

We use a combination of different scattering techniques and rheology to highlight the link between structure and dynamics of dense aqueous suspensions of soft repulsive colloids in the vicinity of a glass transition. Three different latex formulations with an increasing amount of the hydrophilic component resulting in either purely electrostatically or electrosterically stabilized suspensions are investigated. From the analysis of the static structure factor measured by small-angle X-ray scattering, we derive an effective volume fraction that includes contributions from interparticle interactions.

View Article and Find Full Text PDF

Multiple particle tracking (MPT) has been used in an attempt to probe the heterogeneity of acid milk gels, made with and without added pectin, by following the distribution of the displacements of added tracer beads during and after gelation using the Van Hove distribution. Furthermore, the surface chemistry of the latex probe particles was modified in an attempt to control their location in the system and probe the microrheological properties of the protein network and aqueous-phase voids independently. In addition, the mean square displacement (MSD) of the casein micelles/casein aggregates themselves, obtained by diffusing wave spectroscopy (DWS), has been compared to the ensemble-averaged MSD calculated from the data obtained by tracking the movement of the added tracers, with and without a kappa-casein coating.

View Article and Find Full Text PDF

Many of the functional attributes of pectin, whether in the plant cell wall or in engineered food materials, are linked to its gelling properties and in particular to its ability to assemble in the presence of calcium. Pectin's fine structure and local concentration relative to that of its cross-linking ion play a major role in determining resultant gel micro-structures, and consequently the mechanical and transport properties of pectin matrices. Recent studies have sought to probe the basic properties of such calcium-induced matrices, using a light scattering technique called diffusing wave spectroscopy (DWS).

View Article and Find Full Text PDF