Multiple particle tracking (MPT) has been used in an attempt to probe the heterogeneity of acid milk gels, made with and without added pectin, by following the distribution of the displacements of added tracer beads during and after gelation using the Van Hove distribution. Furthermore, the surface chemistry of the latex probe particles was modified in an attempt to control their location in the system and probe the microrheological properties of the protein network and aqueous-phase voids independently. In addition, the mean square displacement (MSD) of the casein micelles/casein aggregates themselves, obtained by diffusing wave spectroscopy (DWS), has been compared to the ensemble-averaged MSD calculated from the data obtained by tracking the movement of the added tracers, with and without a kappa-casein coating.
View Article and Find Full Text PDFMany of the functional attributes of pectin, whether in the plant cell wall or in engineered food materials, are linked to its gelling properties and in particular to its ability to assemble in the presence of calcium. Pectin's fine structure and local concentration relative to that of its cross-linking ion play a major role in determining resultant gel micro-structures, and consequently the mechanical and transport properties of pectin matrices. Recent studies have sought to probe the basic properties of such calcium-induced matrices, using a light scattering technique called diffusing wave spectroscopy (DWS).
View Article and Find Full Text PDF