Publications by authors named "Romantschuk M"

Direct reuse of biogas residue (BR) has the potential to contribute to the dissemination of antibiotic resistance genes (ARGs). Although high-temperature composting has been demonstrated as an effective method for the harmless treatment of organic waste, there is few researches on the fate of ARGs in high-temperature composting of BR. This research examined the impact of adding 5% chitosan and 15% peat on physicochemical characteristics, microbial communities, and removal of ARGs during BR-straw composting in 12 Biolan 220L composters for 48 days.

View Article and Find Full Text PDF

HVO has been noted as a more sustainable fuel, not only leading to lower total CO emissions, but also resulting in lower emissions of toxic substances upon fuel burning. The environmental impact of HVO and HVO diesel blends when accidentally spilled into the soil and ground water has, however, received little attention. While HVO and diesel exhibit nearly identical viscosity and density, their behavior in soils differs due to varying water solubility and fuel additives.

View Article and Find Full Text PDF

This research aims to explore the degradation properties of polyethylene terephthalate (PET) by PET hydrolase (WCCG) in high-temperature composting and its impact on microbial communities. PET degradation, composting parameters and microbial communities were assessed in 220 L sludge composters with PET and WCCG using high-throughput sequencing. Results showed that WCCG addition led to a deceleration of the humification process and a reduction in the relative abundance of thermophilic genera.

View Article and Find Full Text PDF

Bioremediation by biostimulation is an attractive alternative to excavation of contaminated soil. Many remediation methods have been tested with some success; however, due to highly variable results in realistic field conditions, they have not been implemented as widely as they might deserve. To ensure success, methods should be validated under site-analogous conditions before full scale use, which requires expertise and local knowledge by the implementers.

View Article and Find Full Text PDF

Dental healthcare personnel (DHCP) are subjected to microbe-containing aerosols and splatters in their everyday work. Safer work conditions must be developed to ensure the functioning of the healthcare system. By simulating dental procedures, we aimed to compare the virus-containing aerosol generation of four common dental instruments, and high-volume evacuation (HVE) in their mitigation.

View Article and Find Full Text PDF

Soil quality and microbial diversity are essential to the health of ecosystems. However, it is unclear how the use of eco-friendly natural additives can improve the quality and microbial diversity of contaminated soils. Herein, we used high-throughput 16 S rDNA amplicon Illumina sequencing to evaluate the stimulation and development of microbial diversity and concomitant bioremediation in hydrocarbon (HC) and heavy metal (HM)-rich waste disposal site soil when treated with meat and bone meal (MBM), cyclodextrin (Cdx), and MBM and cyclodextrin mixture (Cdx MBM) over a period of 3 months.

View Article and Find Full Text PDF

COVID-19 has highlighted the need for indoor risk-reduction strategies. Our aim is to provide information about the virus dispersion and attempts to reduce the infection risk. Indoor transmission was studied simulating a dining situation in a restaurant.

View Article and Find Full Text PDF

Meat and bone meal (MBM), as slaughterhouse waste, is a potential biostimulating agent, but its efficiency and reliability in composting are largely unknown. To access the MBM application to the composting process of asparagus straw rice, we followed the composting process for 60 days in 220-L composters and another 180 days in 20-L buckets in treatments applied with MBM or urea. The microbial succession was investigated by high-throughput sequencing.

View Article and Find Full Text PDF

Meat and Bone Meal (MBM) and β-cyclodextrin were added to a soil sample co-contaminated by hydrocarbons (diesel fraction C-C and lubricant oil fraction C-C) and heavy metals to promote soil remediation. The pilot study was conducted in the laboratory, maintaining optimal conditions (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • A laboratory study investigated a biological treatment method for removing hydrocarbons (diesel and lubricant oil) from contaminated sandy soil from a former fueling station.
  • The experiment used meat and bone meal (MBM) as a bio-stimulant and cyclodextrin to enhance the degradation of hydrocarbons while monitoring environmental factors like temperature and pH.
  • Results indicated that MBM-treated soils accelerated the degradation of persistent hydrocarbons and had potential for heavy metal sequestration, showcasing the effectiveness of bioremediation for co-contaminated soils.
View Article and Find Full Text PDF

Electrokinetic (EK) remediation has been widely studied at laboratory scales. However, field-scale research is far less. In this study, a 14-day EK remediation was carried out, in a field pilot (4 m) test and a full-scale (200 m) application for the first time, in a cadmium (Cd) contaminated paddy agricultural field near a mining area.

View Article and Find Full Text PDF

In recent decades, wild sable (Carnivora Mustelidae ) habitats, which are often natural forests, have been squeezed by anthropogenic disturbances such as clear-cutting, tilling and grazing. Sables tend to live in sloped areas with relatively harsh conditions. Here, we determine effects of environmental factors on wild sable gut microbial communities between high and low altitude habitats using Illumina Miseq sequencing of bacterial 16S rRNA genes.

View Article and Find Full Text PDF

The brackish Baltic Sea is under diesel oil pollution risk due to heavy ship traffic. The situation is exasperated by densely distributed marinas and a vigorous although seasonal recreational boating. The seasonality and physical environmental variations hamper the monitoring of microbial communities in response to diesel oil spills.

View Article and Find Full Text PDF

A residential lot impacted by spills from a leaking light heating oil tank was treated with a combination of chemical oxidation and bioremediation to avoid technically challenging excavation. The tank left emptied in the ground was used for slow infiltration of the remediation additives to the low permeability, clayey soil. First, hydrogen peroxide and citrate chelate was added for Fenton's reaction-based chemical oxidation, resulting in a ca.

View Article and Find Full Text PDF

Gut microbes play an essential role in the development and functioning of the human immune system. A disturbed gut microbiota composition is often associated with a number of health disorders including immune-mediated diseases. Differences in host characteristics such as ethnicity, living habit and diet have been used to explain differences in the gut microbiota composition in inter-continental comparison studies.

View Article and Find Full Text PDF

Fenton's reaction-based chemical oxidation is in principle a method that can be utilized for all organic fuel residues thus making it a potential all-purpose, multi-contaminant, in situ application for cases in which storage and distribution of different types of fuels have resulted in contamination of soil or groundwater. Since peroxide breakdown reactions are also expected to lead to a physical transport of the target compound, this secondary physical removal, or rebound concentrations related to it, is prone to be affected by the chemical properties of the target compound. Also, since soil conditions are seldom optimal for Fenton's reaction, the balance between chemical oxidation and transport may vary.

View Article and Find Full Text PDF

Nitrogen limitation is considered a good strategy for enhancement of algal lipid production while conversely N repletion has been shown to result in biomass rich in proteins. In this study, the influence of long-term N limitation on fatty acid (FA), protein, chlorophyll , and carotenoid concentrations was studied in N limited cultures. Biomass composition was analyzed from three-time points from N starved late stationary phase cultures, exposed to three different initial N concentrations in the growth medium.

View Article and Find Full Text PDF

Soil contamination with diesel oil is frequent and methods to improve remediation of diesel oil contaminated soils are urgently needed. The aim of the current study was to assess the potential of meat and bone meal (MBM) as a biostimulation agent to enhance diesel oil degradation in contaminated soils collected from southern Finland. MBM (2% w/w) increased oil degradation in soils when compared to natural attenuation.

View Article and Find Full Text PDF

Background: Polycyclic aromatic hydrocarbons (PAHs) accumulate in urban soils, and PAH contamination can change soil microbial community composition. Environmental microbiota is associated with human commensal microbiota, immune system and health. Therefore, studies investigating the degradation of PAHs, and the consequences of soil pollution on microbial communities in urban landscaping materials, are crucial.

View Article and Find Full Text PDF

The xenobiotic priority pollutant pentachlorophenol has been used as a timber preservative in a polychlorophenol bulk synthesis product containing also tetrachlorophenol and trichlorophenol. Highly soluble chlorophenol salts have leaked into groundwater, causing severe contamination of large aquifers. Natural attenuation of higher-chlorinated phenols (HCPs: pentachlorophenol + tetrachlorophenol) at historically polluted sites has been inefficient, but a 4-year full scale in situ biostimulation of a chlorophenol-contaminated aquifer by circulation and re-infiltration of aerated groundwater was remarkably successful: pentachlorophenol decreased from 400 μg L to <1 μg L and tetrachlorophenols from 4000 μg L to <10 μg L.

View Article and Find Full Text PDF

The Baltic Sea is vulnerable to environmental changes. With the increasing shipping activities, the risk of oil spills remains high. Archaea are widely distributed in many environments.

View Article and Find Full Text PDF

In this study, we analysed the impact of heavy metals and plant rhizodeposition on the structure of indigenous microbial communities in rhizosphere and bulk soil that had been exposed to heavy metals for more than 150 years. Samples of the rhizosphere of and non-rhizosphere soils 250 and 450 m from the source of emission that had different metal concentrations were collected for analyses. The results showed that soils were collected 250 m from the smelter had a higher number of Cd-resistant CFU compared with the samples that were collected from 450 m, but no significant differences were observed in the number of total and oligotrophic CFU or the equivalent cell numbers between rhizosphere and non-rhizosphere soils that were taken 250 and 450 m from the emitter.

View Article and Find Full Text PDF

Long-term exposure to polyaromatic hydrocarbons (PAHs) has been connected to chronic human health disorders. It is also well-known that i) PAH contamination alters soil bacterial communities, ii) human microbiome is associated with environmental microbiome, and iii) alteration in the abundance of members in several bacterial phyla is associated with adverse or beneficial human health effects. We hypothesized that soil pollution by PAHs altered soil bacterial communities that had known associations with human health.

View Article and Find Full Text PDF

The present study addresses toxicological properties of metal contaminated soils, using glassworks sites in south-eastern Sweden as study objects. Soil from five selected glassworks sites as well as from nearby reference areas were analysed for total and water-soluble metal concentrations and general geochemical parameters. A battery of biotests was then applied to assess the toxicity of the glassworks soil environments: a test of phytotoxicity with garden cress (Lepidium sativum); the BioTox™ test for toxicity to bacteria using Vibrio fischeri; and analyses of abundancies and biomass of nematodes and enchytraeids.

View Article and Find Full Text PDF