Aims/hypothesis: tRNAs play a central role in protein synthesis. Besides this canonical function, they were recently found to generate non-coding RNA fragments (tRFs) regulating different cellular activities. The aim of this study was to assess the involvement of tRFs in the crosstalk between immune cells and beta cells and to investigate their contribution to the development of type 1 diabetes.
View Article and Find Full Text PDFObjective: The contribution of the mitochondrial electron transfer system to insulin secretion involves more than just energy provision. We identified a small RNA fragment (mt-tRF-Leu) derived from the cleavage of a mitochondrially-encoded tRNA that is conserved between mice and humans. The role of mitochondrially-encoded tRNA-derived fragments remains unknown.
View Article and Find Full Text PDFBackground: A long-term consumption of saturated fat significantly increases the concentration of saturated fatty acids in serum, which accelerates the appearance of senescence markers in β-cells and leads to their dysfunction. An understanding of the mechanisms underlying β-cell senescence induced by stearic acid and the exploration of effective agents preventing it remains largely unclear. Here, we aimed to investigate the protective effect of metformin against stearic acid-treated β-cell senescence and to assess the involvement of miR-297b-5p in this process.
View Article and Find Full Text PDFBackgruound: Chronic exposure to elevated levels of saturated fatty acids results in pancreatic β-cell senescence. However, targets and effective agents for preventing stearic acid-induced β-cell senescence are still lacking. Although melatonin administration can protect β-cells against lipotoxicity through anti-senescence processes, the precise underlying mechanisms still need to be explored.
View Article and Find Full Text PDFtRNA-derived fragments (tRFs) are an emerging class of small non-coding RNAs with distinct cellular functions. Here, we studied the contribution of tRFs to the regulation of postnatal β cell maturation, a critical process that may lead to diabetes susceptibility in adulthood. We identified three tRFs abundant in neonatal rat islets originating from 5' halves (tiRNA-5s) of histidine and glutamate tRNAs.
View Article and Find Full Text PDFTrends Endocrinol Metab
June 2022
Pancreatic β-cell expansion and functional maturation during the birth-to-weaning period plays an essential role in the adaptation of plasma insulin levels to metabolic needs. These events are driven by epigenetic programs triggered by growth factors, hormones, and nutrients. These mechanisms operating in the neonatal period can be at least in part reactivated in adult life to increase the functional β-cell mass and face conditions of increased insulin demand such as obesity or pregnancy.
View Article and Find Full Text PDFThe functional maturation of insulin-secreting β-cells is initiated before birth and is completed in early postnatal life. This process has a critical impact on the acquisition of an adequate functional β-cell mass and on the capacity to meet and adapt to insulin needs later in life. Many cellular pathways playing a role in postnatal β-cell development have already been identified.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2021
Most of the sequences in the human genome do not code for proteins but generate thousands of non-coding RNAs (ncRNAs) with regulatory functions. High-throughput sequencing technologies and bioinformatic tools significantly expanded our knowledge about ncRNAs, highlighting their key role in gene regulatory networks, through their capacity to interact with coding and non-coding RNAs, DNAs and proteins. NcRNAs comprise diverse RNA species, including amongst others PIWI-interacting RNAs (piRNAs), involved in transposon silencing, and small nucleolar RNAs (snoRNAs), which participate in the modification of other RNAs such as ribosomal RNAs and transfer RNAs.
View Article and Find Full Text PDFGlucose-induced insulin secretion, a hallmark of mature β-cells, is achieved after birth and is preceded by a phase of intense proliferation. These events occurring in the neonatal period are decisive for establishing an appropriate functional β-cell mass that provides the required insulin throughout life. However, key regulators of gene expression involved in functional maturation of β-cells remain to be elucidated.
View Article and Find Full Text PDFMacrophages are highly heterogeneous and plastic immune cells with peculiar characteristics dependent on their origin and microenvironment. Following pathogen infection or damage, circulating monocytes can be recruited in different tissues where they differentiate into macrophages. Stimuli present in the surrounding milieu induce the polarisation of macrophages towards a pro-inflammatory or anti-inflammatory profile, mediating inflammatory or homeostatic responses, respectively.
View Article and Find Full Text PDFCircular RNAs (circRNAs) constitute a large class of non-coding RNAs characterized by a covalently closed circular structure. They originate during mRNA maturation through a modification of the splicing process and, according to the included sequences, are classified as Exonic, Intronic, or Exonic-Intronic. CircRNAs can act by sequestering microRNAs, by regulating the activity of specific proteins, and/or by being translated in functional peptides.
View Article and Find Full Text PDFFine-tuning of insulin release from pancreatic β-cells is essential to maintain blood glucose homeostasis. Here, we report that insulin secretion is regulated by a circular RNA containing the lariat sequence of the second intron of the insulin gene. Silencing of this intronic circular RNA in pancreatic islets leads to a decrease in the expression of key components of the secretory machinery of β-cells, resulting in impaired glucose- or KCl-induced insulin release and calcium signaling.
View Article and Find Full Text PDFThe discovery that most mammalian genome sequences are transcribed to ribonucleic acids (RNA) has revolutionized our understanding of the mechanisms governing key cellular processes and of the causes of human diseases, including diabetes mellitus. Pancreatic islet cells were found to contain thousands of noncoding RNAs (ncRNAs), including micro-RNAs (miRNAs), PIWI-associated RNAs, small nucleolar RNAs, tRNA-derived fragments, long non-coding RNAs, and circular RNAs. While the involvement of miRNAs in islet function and in the etiology of diabetes is now well documented, there is emerging evidence indicating that other classes of ncRNAs are also participating in different aspects of islet physiology.
View Article and Find Full Text PDFBackground: Bariatric surgery is an effective treatment for type 2 diabetes. Early post-surgical enhancement of insulin secretion is key for diabetes remission. The full complement of mechanisms responsible for improved pancreatic beta cell functionality after bariatric surgery is still unclear.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) contribute to diverse cellular functions and the dysregulation of their expression or function can contribute to diseases, including diabetes. The contributions of lncRNAs to β-cell development, function and survival has been extensively studied in vitro. However, very little is currently known on the in vivo roles of lncRNAs in the regulation of glucose and insulin homeostasis.
View Article and Find Full Text PDFUnveiling the key pathways underlying postnatal beta-cell proliferation can be instrumental to decipher the mechanisms of beta-cell mass plasticity to increased physiological demand of insulin during weight gain and pregnancy. Using transcriptome and global Serine Threonine Kinase activity (STK) analyses of islets from newborn (10 days old) and adult rats, we found that highly proliferative neonatal rat islet cells display a substantially elevated activity of the mitogen activated protein 3 kinase 12, also called dual leucine zipper-bearing kinase (Dlk). As a key upstream component of the c-Jun amino terminal kinase (Jnk) pathway, Dlk overexpression was associated with increased Jnk3 activity and was mainly localized in the beta-cell cytoplasm.
View Article and Find Full Text PDFPancreatic β-cells located within the islets of Langerhans play a central role in metabolic control. The main function of these cells is to produce and secrete insulin in response to a rise in circulating levels of glucose and other nutrients. The release of insufficient insulin to cover the organism needs results in chronic hyperglycemia and diabetes development.
View Article and Find Full Text PDFBackground: Aberrant microRNA (miRNA) expression levels are associated with various graft rejections. We used our humanized mouse model with transplanted human islets to identify miRNAs in islet grafts related to xenograft rejection and circulating miRNAs associated with xenograft rejection-mediated β-cell loss.
Methods: Diabetic immunodeficient NOD.
Pancreatic β-cell expansion throughout the neonatal period is essential to generate the appropriate mass of insulin-secreting cells required to maintain blood glucose homeostasis later in life. Hence, defects in this process can predispose to diabetes development during adulthood. Global profiling of transcripts in pancreatic islets of newborn and adult rats revealed that the transcription factor E2F1 controls expression of the long noncoding RNA H19, which is profoundly downregulated during the postnatal period.
View Article and Find Full Text PDFAn important feature of type 2 diabetes is a decrease in -cell mass. Therefore, it is essential to find new approaches to stimulate -cell proliferation. We have previously shown that heterozygous inactivation of the Na/Ca exchanger (isoform 1; NCX1), a protein responsible for Ca extrusion from cells, increases -cell proliferation, mass, and function in mice.
View Article and Find Full Text PDFContext: Hyperparathyroidism is associated with hypercalcemia and the excess of parathyroid hormone secretion; however, the alterations in molecular pattern of functional genes during parathyroid tumorigenesis have not been unraveled. We aimed at establishing transcriptional patterns of normal and pathological parathyroid glands (PGs) in sporadic primary (HPT1) and secondary hyperparathyroidism (HPT2).
Objective: To evaluate dynamic alterations in molecular patterns as a function of the type of PG pathology, a comparative transcript analysis was conducted in subgroups of healthy samples, sporadic HPT1 adenoma and hyperplasia, and HPT2.
Objective: There is strong evidence for an involvement of different classes of non-coding RNAs, including microRNAs and long non-coding RNAs, in the regulation of β-cell activities and in diabetes development. Circular RNAs were recently discovered to constitute a substantial fraction of the mammalian transcriptome but the contribution of these non-coding RNAs in physiological and disease processes remains largely unknown. The goal of this study was to identify the circular RNAs expressed in pancreatic islets and to elucidate their possible role in the control of β-cells functions.
View Article and Find Full Text PDF