This study investigates the impact of plasma-seed interaction on germination and early plant development, focusing on and . The investigation delves into changes in chemical composition, water absorption, and surface morphology induced by plasma filaments generated in synthetic air. These analyses were conducted using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFPhosphatidylinositol 4-kinases (PI4Ks) are the first enzymes that commit phosphatidylinositol into the phosphoinositide pathway. Here, we show that Arabidopsis thaliana seedlings deficient in PI4Kβ1 and β2 have several developmental defects including shorter roots and unfinished cytokinesis. The pi4kβ1β2 double mutant was insensitive to exogenous auxin concerning inhibition of root length and cell elongation; it also responded more slowly to gravistimulation.
View Article and Find Full Text PDFThe phytohormone salicylic acid (SA) has a crucial role in plant physiology. Its role is best described in the context of plant response to pathogen attack. During infection, SA is rapidly accumulated throughout the green tissues and is important for both local and systemic defences.
View Article and Find Full Text PDFBeing natural plant antimicrobials, saponins have potential for use as biopesticides. Nevertheless, their activity in plant-pathogen interaction is poorly understood. We performed a comparative study of saponins' antifungal activities on important crop pathogens based on their effective dose (EC) values.
View Article and Find Full Text PDFThe integrity of the actin cytoskeleton is essential for plant immune signalling. Consequently, it is generally assumed that actin disruption reduces plant resistance to pathogen attack. Here, we demonstrate that actin depolymerization induced a dramatic increase in salicylic acid (SA) levels in Arabidopsis thaliana.
View Article and Find Full Text PDF