Publications by authors named "Romana Limberger"

The diversity in organismal responses to environmental changes (i.e., response diversity) plays a crucial role in shaping community and ecosystem stability.

View Article and Find Full Text PDF

Biodiversity may increase ecosystem resilience. However, we have limited understanding if this holds true for ecosystems that respond to gradual environmental change with abrupt shifts to an alternative state. We used a mathematical model of anoxic-oxic regime shifts and explored how trait diversity in three groups of bacteria influences resilience.

View Article and Find Full Text PDF

Evolution might rescue populations from extinction in changing environments. Using experimental evolution with microalgae, we investigated if competition influences adaptation to an abiotic stressor, and vice versa, if adaptation to abiotic change influences competition. In a first set of experiments, we propagated monocultures of five species with and without increasing salt stress for approximately 180 generations.

View Article and Find Full Text PDF

Metacommunity theory suggests that dispersal is a key driver of diversity and ecosystem functioning in changing environments. The capacity of dispersal to mitigate effects of environmental change might vary among trophic groups, potentially resulting in changes in trophic interactions and food web structure. In a mesocosm experiment, we compared the compositional response of bacteria, phyto- and zooplankton to a factorial manipulation of acidification and dispersal.

View Article and Find Full Text PDF

Using microcosm experiments, we investigated the interactive effects of temperature and light on specific growth rates of three species each of the phytoplanktonic genera Cryptomonas and Dinobryon. Several species of these genera play important roles in the food web of lakes and seem to be sensitive to high water temperature. We measured growth rates at three to four photon flux densities ranging from 10 to 240 μmol photon · m  · s and at 4-5 temperatures ranging from 10°C to 28°C.

View Article and Find Full Text PDF

Evolution is a fundamental ecosystem process. The study of genomic variation of organisms can not only improve our understanding of evolutionary processes, but also of contemporary and future ecosystem dynamics. We argue that integrative research between the fields of genomics and ecosystem ecology could generate new insights.

View Article and Find Full Text PDF

The fluxes of energy, matter, and organisms are important structuring forces of metaecosystems. Such ecosystem fluxes likely interact with environmental heterogeneity and differentially affect the diversity of multiple communities. In an aquatic mesocosm experiment, we tested how ecosystem flux and patch heterogeneity affected the diversity of bacteria, phytoplankton, and zooplankton metacommunities, and the structure and functioning of metaecosystems.

View Article and Find Full Text PDF

Predicting the effect of climate change on biodiversity is a multifactorial problem that is complicated by potentially interactive effects with habitat properties and altered species interactions. In a microcosm experiment with communities of microalgae, we analysed whether the effect of rising temperature on diversity depended on the initial or the final temperature of the habitat, on the rate of change, on dispersal and on landscape heterogeneity. We also tested whether the response of species to temperature measured in monoculture allowed prediction of the composition of communities under rising temperature.

View Article and Find Full Text PDF

While the effect of habitat connectivity on local and regional diversity has been analysed in a number of studies, time-dependent dynamics in metacommunities have received comparatively little consideration. When local patches of a metacommunity are identical in environmental conditions but differ in initial community composition, dispersal among patches may result in homogenization of local communities. In a microcosm experiment with benthic ciliates, we tested the hypothesis that the effect of connectivity on diversity is time-dependent and only transitory, with the degree of connectivity affecting the time to homogenization but not the final outcome.

View Article and Find Full Text PDF

Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator.

View Article and Find Full Text PDF

The spatial scale of disturbance is a factor potentially influencing the relationship between disturbance and diversity. There has been discussion on whether disturbances that affect local communities and create a mosaic of patches in different successional stages have the same effect on diversity as regional disturbances that affect the whole landscape. In a microcosm experiment with metacommunities of aquatic protists, we compared the effect of local and regional disturbances on the disturbance-diversity relationship.

View Article and Find Full Text PDF

There is considerable theoretical evidence that a trade-off between competitive and colonization ability enables species coexistence. However, empirical studies testing for the presence of a competition-colonization (CC) trade-off and its importance for species coexistence have found mixed results. In a microcosm experiment, we looked for a CC trade-off in a community of six benthic ciliate species.

View Article and Find Full Text PDF

Biofilm formation is controlled by an array of coupled physical, chemical, and biotic processes. Despite the ecological relevance of microbial biofilms, their community formation and succession remain poorly understood. We investigated the effect of flow velocity, as the major physical force in stream ecosystems, on biofilm community succession (as continuous shifts in community composition) in microcosms under laminar, intermediate, and turbulent flow.

View Article and Find Full Text PDF