Publications by authors named "Romana Borowicz"

Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase.

View Article and Find Full Text PDF

Discovery of novel agonists and antagonists for G protein-coupled receptors (GPCRs) relies heavily on cell-based assays because determination of functional consequences of receptor engagement is often desirable. Currently, there are several key parameters measured to achieve this, including mobilization of intracellular Ca2+ and formation of cyclic adenosine monophosphate or inositol triphosphate. However, no single assay platform is suitable for all situations, and all of the assays have limitations.

View Article and Find Full Text PDF

Due to their phagocytic and poorly proliferative nature, it has been difficult to transfect human monocytes and macrophages. Adenoviral vectors have recently allowed transduction of a high percentage of human macrophages, but only after CSF upregulation of the integrins, alphavbeta3 or alphavbeta5, during culture for 48 h, a time allowing significant monocyte to macrophage differentiation. In our hands, after 24-h incubation with M-CSF (20 ng/ml) and a further 24-h incubation with an adenoviral vector encoding green fluorescent protein (AdV-GFP) [multiplicity of infection (MOI)=50:1], only 35% of CD14-positive cells express GFP.

View Article and Find Full Text PDF