Publications by authors named "Roman-Hidalgo Cristina"

Background: In recent decades, green chemistry has been focusing on the adaptation of different chemical methods towards environmental friendliness. Sample preparation procedures, which constitute a fundamental step in analytical methodology, have also been modified and implemented in this direction. In particular, electromembrane extraction (EME) procedures, which have traditionally used plastic supports, have been optimized towards greener approaches through the emergence of alternative materials.

View Article and Find Full Text PDF

Background And Purpose: Organisms, including humans, are subjected to the simultaneous action of a wide variety of pollutants, the effects of which should not be considered in isolation, as many synergies and antagonisms have been found between many of them. Therefore, this work proposes an in vivo study to evaluate the effect of certain metal contaminants on the bioavailability and metabolism of pharmacologically active compounds. Because the most frequent entry vector is through ingestion, the influence of the gut microbiota and the possible protective effects of selenium has been additionally evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • A chitosan biopolymeric membrane was effectively utilized in a green electromembrane extraction method to simultaneously extract seven parabens and three fluoroquinolones, even in the presence of other drugs.
  • Optimal conditions for the extraction were established, leading to high enrichment factors for most of the studied compounds and demonstrating good efficiency and detection limits.
  • The method proved successful for analyzing various water samples, highlighting the environmental benefits of using biodegradable chitosan over traditional plastic materials.
View Article and Find Full Text PDF

A selective electromembrane extraction procedure for the extraction of Enrofloxacin, Marbofloxacin and Flumequine, usually employed as antibiotic in veterinarian use, is proposed by using a chitosan biofilm, composed by 60% (w/w) chitosan and 40% (w/w) Aliquat®336, as active biopolymeric support. The interaction mechanism occurring between the target drugs and the biopolymer has been deeply studied using the Quantum Theory of Atoms in Molecules. The obtained results show the interaction between the extracted fluoroquinolones and the biomembrane is stabilized by two hydrogen bonds formed between both the carboxyl and keto groups of the drugs with both the amine and hydroxyl groups of glucosamine in the biopolymer.

View Article and Find Full Text PDF

In this work the presence of different pharmaceuticals at Doñana National Park (Spain) and their main entry sources (input source or entry points) have been stated over the 2011-2016 years period. Twenty-three selected pharmaceuticals (corresponding to eight therapeutic families) were evaluated in crayfish and water samples from Doñana National Park (Spain) (six sampling points selected in order to cover different possible pollution sources into and surrounding the Park). The multiresidue determination was carried out using enzymatic-microwave assisted extraction prior to high performance liquid chromatography mass spectrometry detection.

View Article and Find Full Text PDF

The use of silver nanoparticles stabilized with citrate and polyvinylpyrrolidone as a sensor for aluminum ions determination is proposed in this paper. These non-functionalized and specific nanoparticles provide a highly selective and sensitive detection system for aluminum in acidic solutions. The synthesized nanoparticles were characterized by transmission electron microscopy.

View Article and Find Full Text PDF

In the present work, a disposable microextraction device with a polyamide 6 nano-fibrous supported liquid membrane (SLM) is employed for the pretreatment of minute volumes of biological fluids. The device is placed in a sample vial for an at-line coupling to a commercial capillary electrophoresis instrument with UV-Vis detection (CE-UV) and injections are performed fully automatically from the free acceptor solution above the SLM with no contact between the capillary and the membrane. Up to 4-fold enrichment of model basic (nortriptyline, haloperidol, loperamide, and papaverine) and acidic (ibuprofen, naproxen, ketoprofen, and diclofenac) drugs is achieved by optimizing the ratio of the donor to the acceptor solution volumes (16 to 4 μL, respectively).

View Article and Find Full Text PDF

A chitosan membrane composed by 60% (w/w) chitosan and 40% (w/w) Aliquat®336 has been proposed as a new biopolymeric support for electromembrane extraction. The new support has been characterized by Scanning Electron Microscopy, resulting a 30-35 µm thickness. Amoxicillin, nicotinic acid, hippuric acid, salicylic acid, anthranilic acid, ketoprofen, naproxen and ibuprofen have been successfully extracted using the proposed support.

View Article and Find Full Text PDF

In the present work, a new supported liquid membrane (SLM) has been developed for on-chip electromembrane extraction of acidic drugs combined with HPLC or CE, providing significantly higher stability than those reported up to date. The target analytes are five widely used non-steroidal anti-inflammatory drugs (NSAIDs): ibuprofen (IBU), diclofenac (DIC), naproxen (NAX), ketoprofen (KTP) and salicylic acid (SAL). Two different microchip devices were used, both consisted basically of two poly(methyl methacrylate) (PMMA) plates with individual channels for acceptor and sample solutions, respectively, and a 25 µm thick porous polypropylene membrane impregnated with the organic solvent in between.

View Article and Find Full Text PDF

The use of polymer inclusion membranes (PIMs) as support of 1-octanol liquid membrane in electromembrane extraction (EME) procedure is proposed. Synthesis of PIMs were optimized to a composition of 29% (w/w) of cellulose triacetate as base polymer and 71% (w/w) of Aliquat®336 as cationic carrier. Flat PIMs of 25µm thickness and 6mm diameter were used.

View Article and Find Full Text PDF

A new support has been proposed to be used for carrier-mediated electromembrane extraction purposes. The new support (Tiss®-OH) is a 100µm thickness sheet nanofiber membrane manufactured by electrospinning and composed by acrylic nanofibers. It has been used in an electromembrane extraction (EME) combined with a HPLC procedure using diode array detection.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3341t8km6oflnu13p16aum7f5j11fnt6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once