Background: Antegrade intramedullary nailing in humeral shaft fracture has been abandoned by certain orthopedic surgeons because of rotator cuff injury caused by first- and second-generation intramedullary nails (IMNs). However, only a few studies have specifically addressed the results of antegrade nailing for the treatment of humeral shaft fractures with a straight third-generation IMN; thus, complications need to be re-evaluated. We hypothesized that fixation of displaced humeral shaft fractures with a straight third-generation antegrade IMN with the percutaneous technique avoid shoulder problems (stiffness and pain) incurred by first- and second-generation IMNs.
View Article and Find Full Text PDFHistone deacetylases (HDACs) have been identified as therapeutic targets due to their regulatory function in chromatin structure and organization. Here, we analyzed the therapeutic effect of LBH589, a class I-II HDAC inhibitor, in acute lymphoblastic leukemia (ALL). In vitro, LBH589 induced dose-dependent antiproliferative and apoptotic effects, which were associated with increased H3 and H4 histone acetylation.
View Article and Find Full Text PDFThe role of epigenetic mechanisms in the regulation of microRNAs (miRNAs) with a tumour-suppressor function in human neoplasms has recently been established. Several miRNAs have been found to be inappropriately regulated by DNA methylation in patients with acute lymphoblastic leukaemia (ALL). We analysed the methylation status of the three members of the MIR9 family (MIR9-1, MIR9-2 and MIR9-3) in a uniformly treated cohort of 200 newly diagnosed ALLs.
View Article and Find Full Text PDFRecent studies have shown aberrant expression of SOX11 in various types of aggressive B-cell neoplasms. To elucidate the molecular mechanisms leading to such deregulation, we performed a comprehensive SOX11 gene expression and epigenetic study in stem cells, normal hematopoietic cells and different lymphoid neoplasms. We observed that SOX11 expression is associated with unmethylated DNA and presence of activating histone marks (H3K9/14Ac and H3K4me3) in embryonic stem cells and some aggressive B-cell neoplasms.
View Article and Find Full Text PDFTranscription factors are common targets of epigenetic inactivation in human cancer. Promoter hypermethylation and subsequent silencing of transcription factors can lead to further deregulation of their targets. In this study, we explored the potential epigenetic deregulation in cancer of Ikaros family genes, which code for essential transcription factors in cell differentiation and exhibit genetic defects in hematologic neoplasias.
View Article and Find Full Text PDFBackground: Fms-like tyrosine kinase-3 (FLT3) gene mutations are frequent in acute promyelocytic leukemia but their prognostic value is not well established.
Design And Methods: We evaluated FLT3-internal tandem duplication and FLT3-D835 mutations in patients treated with all-trans retinoic acid and anthracycline-based chemotherapy enrolled in two subsequent trials of the Programa de Estudio y Tratamiento de las Hemopatías Malignas (PETHEMA) and Hemato-Oncologie voor Volwassenen Nederland (HOVON) groups between 1996 and 2005.
Results: FLT3-internal tandem duplication and FLT3-D835 mutation status was available for 306 (41%) and 213 (29%) patients, respectively.
Background: LMO2 is highly expressed at the most immature stages of lymphopoiesis. In T-lymphocytes, aberrant LMO2 expression beyond those stages leads to T-cell acute lymphoblastic leukemia, while in B cells LMO2 is also expressed in germinal center lymphocytes and diffuse large B-cell lymphomas, where it predicts better clinical outcome. The implication of LMO2 in B-cell acute lymphoblastic leukemia must still be explored.
View Article and Find Full Text PDFAberrant DNA methylation is one of the most frequent alterations in patients with Acute Lymphoblastic Leukemia (ALL). Using methylation bead arrays we analyzed the methylation status of 807 genes implicated in cancer in a group of ALL samples at diagnosis (n = 48). We found that 154 genes were methylated in more than 10% of ALL samples.
View Article and Find Full Text PDFBackground: Dendritic cell (DC)-based immunotherapeutic protocols are being developed to treat acute myeloid leukemia (AML). So far, DCs for clinical use are obtained from leukemic blasts or from monocytes, after 6 to 10 days of ex vivo culture. However, DC precursors are easily driven to DCs in short-term culture.
View Article and Find Full Text PDFBackground: Aberrant promoter DNA methylation has been shown to play a role in acute myeloid leukemia (AML) pathophysiology. However, further studies to discuss the prognostic value and the relationship of the epigenetic signatures with defined genomic rearrangements in acute myeloid leukemia are required.
Methodology/principal Findings: We carried out high-throughput methylation profiling on 116 de novo AML cases and we validated the significant biomarkers in an independent cohort of 244 AML cases.
In Burkitt lymphoma/leukemia (BL), achievement of complete remission with first-line chemotherapy remains a challenging issue, as most patients who respond remain disease-free, whereas those refractory have few options of being rescued with salvage therapies. The mechanisms underlying BL chemoresistance and how it can be circumvented remain undetermined. We previously reported the frequent inactivation of the proapoptotic BIM gene in B-cell lymphomas.
View Article and Find Full Text PDFBackground: Despite the favorable results of imatinib front line in chronic-phase chronic myeloid leukemia there is room for improvement.
Design And Methods: Early intervention during imatinib therapy was undertaken in 210 adults with chronic-phase chronic myeloid leukemia less than three months from diagnosis (Sokal high risk: 16%). Patients received imatinib 400 mg/day.
Background: The therapeutic use of multipotent stem cells depends on their differentiation potential, which has been shown to be variable for different populations. These differences are likely to be the result of key changes in their epigenetic profiles.
Methodology/principal Findings: to address this issue, we have investigated the levels of epigenetic regulation in well characterized populations of pluripotent embryonic stem cells (ESC) and multipotent adult stem cells (ASC) at the trancriptome, methylome, histone modification and microRNA levels.
Wnt5a is a member of the Wnt family of proteins that signals through the non-canonical Wnt/Ca(2+)pathway to suppress cyclin D1. Deregulation of this pathway has been found in animal models suggesting that it acts as tumour suppressor in acute myeloid leukemia (AML). Although DNA methylation is the main mechanism of regulation of the canonical Wnt pathway in AML, the role of WNT5A abnormalities has never been evaluated in this clinical setting.
View Article and Find Full Text PDFBackground: Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs) have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required.
Methodology/principal Findings: Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203), T-cell (n = 30), and myeloid (n = 134) neoplasias, as well as 37 samples from different cell types of the hematopoietic system.
The development of Imatinib Mesylate (IM), the first specific inhibitor of BCR-ABL1, has had a major impact in patients with Chronic Myeloid Leukemia (CML), establishing IM as the standard therapy for CML. Despite the clinical success obtained with the use of IM, primary resistance to IM and molecular evidence of persistent disease has been observed in 20-25% of IM treated patients. The existence of second generation TK inhibitors, which are effective in patients with IM resistance, makes identification of predictors of resistance to IM an important goal in CML.
View Article and Find Full Text PDFIn the last years, microRNAs (miRNA) have emerged as new molecular players involved in carcinogenesis. Deregulation of miRNAs expression has been shown in different human cancer but the molecular mechanism underlying the alteration of miRNA expression is unknown. To identify tumor-supressor miRNAs silenced through aberrant epigenetic events in colorectal cancer (CRC), we used a sequential approach.
View Article and Find Full Text PDFWhereas transcriptional silencing of genes due to epigenetic mechanisms is one of the most important alterations in acute lymphoblastic leukemia (ALL), some recent studies indicate that DNA methylation contributes to down-regulation of miRNAs during tumorigenesis. To explore the epigenetic alterations of miRNAs in ALL, we analyzed the methylation and chromatin status of the miR-124a loci in ALL. Expression of miR-124a was down-regulated in ALL by hypermethylation of the promoter and histone modifications including decreased levels of 3mk4H3 and AcH3 and increased levels of 2mK9H3, 3mK9H3, and 3mK27H3.
View Article and Find Full Text PDFBackground: Expression of the pro-apoptotic BCL-2-interacting mediator (BIM) has recently been implicated in imatinib-induced apoptosis of BCR-ABL1(+) cells. However, the mechanisms involved in the regulation of BIM in CML and its role in the clinical setting have not been established.
Design And Methods: We analysed the mRNA expression of BIM in 100 newly diagnosed patients with CML in chronic phase by Q-RT-PCR and the protein levels by Western blot analysis.
Activation of the Wnt signaling pathway has been implicated recently in the pathogenesis of leukemia. We studied the function of epigenetic regulation of the Wnt pathway and its prognostic relevance in acute myelogenous leukemia (AML). We used a methylation-specific polymerase chain reaction approach to analyze the promoter methylation status of a panel of Wnt antagonists including sFRP1, sFRP2, sFRP4, sFRP5, DKK1 and DKK3.
View Article and Find Full Text PDFPurpose: To identify microRNAs (miRNAs) epigenetically regulated in acute lymphoblastic leukemia (ALL).
Methods: We first examined ALL-derived cell lines for the presence of abnormal levels of two different histone modifications (trimethylation of H3 lysine 4 [K4H3me3] and dimethylation of H3 lysine 9 [K9H3me2]) in the 5'UTR regions around CpG islands of 78 miRNAs by chromatin immunoprecipitation (ChIP)-on-ChIP analysis. Methylation status (methylation-specific polymerase chain reaction [PCR]) and expression (quantitative PCR) of miRNAs showing a pattern of histone modifications linked to a closed chromatin structure were analyzed in a panel of six ALL cell lines and in 353 ALL patients.