Sustainable alternatives to high-environmental-input feed ingredients are important to reducing the environmental impact of animal agriculture. Protein and oil extracted from cultivation of black soldier fly (Hermetia illucens) larvae (BSFL) on waste feedstocks such as manure, food waste, and plant residues could be a suitable source of nutrients. The oil from BFSL contains large amounts of saturated fatty acids, particularly lauric acid, and may be a more sustainable alternative to palm and coconut oils that are currently used in calf milk replacers in many parts of the world.
View Article and Find Full Text PDFSome cellulolytic bacteria require 1 or more branched-chain volatile fatty acids (BCVFA) for the synthesis of branched-chain AA and branched-chain long-chain fatty acids because they are not able to uptake branched-chain AA or lack 1 or more enzymes to synthesize branched-chain AA de novo. Supplemental BCVFA and valerate were included previously as a feed additive that was later removed from the market; these older studies and more current studies have noted improvements in neutral detergent fiber digestibility and milk efficiency. However, most studies provided a single BCVFA or else isobutyrate (IB), 2-methylbutyrate (MB), isovalerate, and valerate altogether without exploring optimal combinations.
View Article and Find Full Text PDFOur objectives were to evaluate potential interactions in culture conditions that influence how exogenously dosed branched-chain VFA (BCVFA) would be recovered as elongated fatty acids (FA) or would affect bacterial populations. A 2 × 2 × 2 factorial arrangement of treatments evaluated 3 factors: (1) without versus with BCVFA (0 vs. 2 mmol/d each of isobutyrate, isovalerate, and 2-methylbutyrate; each dose was partially substituted with C-enriched tracers before and during the collection period); (2) high versus low pH (ranging diurnally from 6.
View Article and Find Full Text PDFTo support improving genetic potential for increased milk production, intake of digestible carbohydrate must also increase to provide digestible energy and microbial protein synthesis. We hypothesized that the provision of exogenous branched-chain volatile fatty acids (BCVFA) would improve both neutral detergent fiber (NDF) degradability and efficiency of microbial protein synthesis. However, BCVFA should be more beneficial with increasing efficiency of bacterial protein synthesis associated with increasing passage rate (k).
View Article and Find Full Text PDFThree experiments assessed branched-chain volatile fatty acid (BCVFA) stimulation of neutral detergent fiber (NDF) disappearance after 24 h of incubation in batch cultures derived from ruminal fluid inocula that were enriched with particulate-phase bacteria. In experiment 1, a control was compared with 3 treatments with isomolar doses of all 3 BCVFA (plus valerate), all 3 branched-chain AA (BCAA), or half of each BCVFA and BCAA mix with either alfalfa or grass hays (50%) and ground corn grain (50%). A portion of the BCAA and BCVFA doses were enriched with C, and valerate (also enriched with C) was added with BCVFA.
View Article and Find Full Text PDFNitrates have been fed to ruminants, including dairy cows, as an electron sink to mitigate CH emissions. In the NO reduction process, NO can accumulate, which could directly inhibit methanogens and possibly other microbes in the rumen. Saccharomyces cerevisiae yeast was hypothesized to decrease NO through direct reduction or indirectly by stimulating the bacterium Selenomonas ruminantium, which is among the ruminal bacteria most well characterized to reduce both NO and NO.
View Article and Find Full Text PDFNitrates have been fed to ruminants, including dairy cows, as an electron sink to mitigate CH emissions. In the NO reduction process, NO can accumulate, which could directly inhibit methanogens and some bacteria. However, little information is available on eukaryotic microbes in the rumen.
View Article and Find Full Text PDFThis work evaluated the National Research Council (NRC) dairy model (2001) predictions of rumen undegradable (RUP) and degradable (RDP) protein compared with measured postruminal non-ammonia, nonmicrobial (NANMN) and microbial N flows. Models were evaluated using the root mean squared prediction error (RMSPE) as a percent of the observed mean, mean and slope biases as percentages of mean squared prediction error (MSPE), and concordance correlation coefficient (CCC). The NRC (2001) over-estimated NANMN by 18% and under-estimated microbial N by 14%.
View Article and Find Full Text PDFEvaluation of ration balancing systems such as the National Research Council (NRC) Nutrient Requirements series is important for improving predictions of animal nutrient requirements and advancing feeding strategies. This work used a literature data set (n = 550) to evaluate predictions of total-tract digested neutral detergent fiber (NDF), fatty acid (FA), crude protein (CP), and nonfiber carbohydrate (NFC) estimated by the NRC (2001) dairy model. Mean biases suggested that the NRC (2001) lactating cow model overestimated true FA and CP digestibility by 26 and 7%, respectively, and under-predicted NDF digestibility by 16%.
View Article and Find Full Text PDFThe objective was to summarize the literature and derive equations that relate the chemical composition of diet and rumen characteristics to the intestinal supply of microbial nitrogen (MicN), efficiency of microbial protein synthesis (EMPS), and flow of nonammonia nonmicrobial N (NANMN). In this study, 619 treatment means from 183 trials were assembled for dairy cattle sampled from the duodenum or omasum. Backward elimination multiple regression was used to derive equations to estimate flow of nitrogenous components over a large range of dietary conditions.
View Article and Find Full Text PDFSeveral attempts have been made to quantify microbial protein flow from the rumen; however, few studies have evaluated tradeoffs between empirical equations (microbial N as a function of diet composition) and more mechanistic equations (microbial N as a function of ruminal carbohydrate digestibility). Although more mechanistic approaches have been touted because they represent more of the biology and thus might behave more appropriately in extreme scenarios, their precision is difficult to evaluate. The objective of this study was to derive equations describing starch, neutral detergent fiber (NDF), and organic matter total-tract and ruminal digestibilities; use these equations as inputs to equations predicting microbial N (MicN) production; and evaluate the implications of the different calculation methods in terms of their precision and accuracy.
View Article and Find Full Text PDF