One of the control mechanisms of cathepsin B biosynthesis and trafficking operates through alternative splicing of pre-mRNA. An mRNA lacking exon 2 is more efficiently translated than that containing all exons, and may be responsible for elevated biosynthesis and enzyme routing to the extracellular space, with critical consequences for connective tissue integrity in pathologies such as cancer and arthritis. mRNA missing exons 2 and 3 encodes a truncated procathepsin B form that is targeted to mitochondria.
View Article and Find Full Text PDFBesides acting as an inhibitor, the propeptide of human cathepsin B exerts an important auxiliary function as a chaperone in promoting correct protein folding. To explore the ability of N-terminally truncated forms of procathepsin B to fold into enzymatically active proteins, we produced procathepsin B variants progressively lacking N-terminal structural elements in baculovirus-infected insect cells. N-terminal truncation of the propeptide by up to 22 amino acids did not impair the production of activable procathepsin B.
View Article and Find Full Text PDFThe alternatively spliced messenger RNA of the human cysteine peptidase cathepsin B missing exons 2 and 3 encodes a truncated form of the enzyme lacking the signal peptide and part of the inhibitory propeptide. This deletion results in a new N-terminal leader sequence characteristic of proteins predestined for transport into mitochondria. We determined enzyme targeting to intracellular organelles by transfecting HeLa cells with constructs containing segments of variable length of the N terminus of truncated cathepsin B fused to green fluorescent protein.
View Article and Find Full Text PDFThe cysteine peptidase cathepsin B is responsible for connective tissue breakdown in several diseases. The pathological expression of cathepsin B may depend on the structure of its mRNA. We investigated the translational efficiency of the cathepsin B mRNA untranslated regions (UTRs) using fusion constructs to green fluorescent protein (GFP) and luciferase.
View Article and Find Full Text PDFPathological overexpression and trafficking of the cysteine peptidase cathepsin B depend in part on the composition of its mRNA. To investigate the roles of the alternatively spliced exons 2 and 3 in the 5'-untranslated region of cathepsin B mRNA we produced constructs of cathepsin B fused to green fluorescent protein. Expression and trafficking of the fluorescent chimeric products was followed in living human immortalized chondrocytes and HeLa cells.
View Article and Find Full Text PDFCathepsin B, a marker of the dedifferentiated chondrocyte phenotype, contributes to cartilage destruction in osteoarthritis and pathological proteolysis in rheumatoid arthritis and cancer. In search of possible means for neutralizing the action of this enzyme, we compared its expression, biosynthesis and distribution in articular chondrocytes and two lines of immortalized human chondrocytes. Native articular chondrocytes in primary culture and the polyclonal T/C-28a2 chondrocyte cell line were similar with respect to the number of endosomes and lysosomes, the distribution of three alternatively spliced cathepsin B mRNA forms, and the cathepsin B activity.
View Article and Find Full Text PDF