Evolutionary changes in brain and craniofacial development have endowed humans with unique cognitive and social skills, but also predisposed us to debilitating disorders in which these traits are disrupted. What are the developmental genetic underpinnings that connect the adaptive evolution of our cognition and sociality with the persistence of mental disorders with severe negative fitness effects? We argue that loss of function of genes involved in transcriptional regulation represents a crucial link between the evolution and dysfunction of human cognitive and social traits. The argument is based on the haploinsufficiency of many transcriptional regulator genes, which makes them particularly sensitive to loss-of-function mutations.
View Article and Find Full Text PDFMany human birth defects and neurodevelopmental disorders are caused by loss-of-function mutations in a single copy of transcription factor (TF) and chromatin regulator genes. Although this dosage sensitivity has long been known, how and why haploinsufficiency (HI) of transcriptional regulators leads to developmental disorders (DDs) is unclear. Here I propose the hypothesis that such DDs result from defects in cell fate determination that are based on disrupted bistability in the underlying gene regulatory network (GRN).
View Article and Find Full Text PDFMaternally inherited symbionts such as Wolbachia have long been seen mainly as reproductive parasites, with deleterious effects on host fitness. It is becoming clear, however, that, frequently, these symbionts also have beneficial effects on host fitness, either along with reproductive parasitism or not. Using the examples of cytoplasmic incompatibility (CI) and male-killing (MK), we here analyze the effect of direct fitness benefits on the evolution of reproductive parasites.
View Article and Find Full Text PDFWolbachia are intracellular bacteria that infect a vast range of arthropod species, making them one of the most prevalent endosymbionts in the world. Wolbachia's stunning evolutionary success is mostly due to their reproductive parasitism but also to mutualistic effects such as increased host fecundity or protection against pathogens. However, the mechanisms underlying Wolbachia phenotypes, both parasitic and mutualistic, are only poorly understood.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
February 2015
Wolbachia are the most abundant bacterial endosymbionts among arthropods. Although maternally inherited, they do not conform to the widespread view that vertical transmission inevitably selects for beneficial symbionts. Instead, Wolbachia are notorious for their reproductive parasitism which, although lowering host fitness, ensures their spread.
View Article and Find Full Text PDFWolbachia are bacterial endosymbionts that manipulate the reproduction of their arthropod hosts. Although theory suggests that infections are frequently lost within host species due to the evolution of resistance, Wolbachia infect a huge number of species worldwide. This apparent paradox suggests that horizontal transmission between host species has been a key factor in shaping the global Wolbachia pandemic.
View Article and Find Full Text PDFWolbachia are intracellular bacteria that manipulate the reproduction of their arthropod hosts in remarkable ways. They are predominantly transmitted vertically from mother to offspring but also occasionally horizontally between species. In doing so, they infect a huge range of arthropod species worldwide.
View Article and Find Full Text PDF