Zinc (Zn)-manganese dioxide (MnO) rechargeable batteries have attracted research interest because of high specific theoretical capacity as well as being environmentally friendly, intrinsically safe and low-cost. Liquid electrolytes, such as potassium hydroxide, are historically used in these batteries; however, many failure mechanisms of the Zn-MnO battery chemistry result from the use of liquid electrolytes, including the formation of electrochemically inert phases such as hetaerolite (ZnMnO) and the promotion of shape change of the Zn electrode. This manuscript reports on the fundamental and commercial results of gel electrolytes for use in rechargeable Zn-MnO batteries as an alternative to liquid electrolytes.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2015
Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow.
View Article and Find Full Text PDF