Publications by authors named "Roman Ya Kezerashvili"

We study direct and indirect pseudomagnetoexcitons, formed by an electron and a hole in the layers of gapped graphene under strain-induced gauge pseudomagnetic field. Since the strain-induced pseudomagnetic field acts on electrons and holes the same way, it occurs that the properties of single pseudomagnetoexcitons, their collective effects and phase diagram are cardinally different from those of magnetoexcitons in a real magnetic field. We have derived wave functions and energy spectrum of direct in a monolayer and indirect pseudomagnetoexcitons in a double layer of gapped graphene.

View Article and Find Full Text PDF

We study optical transitions in spatially indirect excitons in transition metal dichalcogenide (TMDC) heterostructures separated by an integer number of hexagonal boron nitride (h-BN) monolayers. By solving the Schrödinger equation with the Keldysh potential for a spatially indirect exciton, we obtain eigenfunctions and eigenenergies for the ground and excited states and study their dependence on the interlayer separation, controlled by varying the number of h-BN monolayers. The oscillator strength, optical absorption coefficient, and optical absorption factor, the fraction of incoming photons absorbed in the TMDC/h-BN/TMDC heterostructure, are evaluated and studied as a function of the interlayer separation.

View Article and Find Full Text PDF

The Bose-stimulated self-organization of a quasi-two-dimensional nonequilibrium Bose-Einstein condensate in an in-plane potential is proposed. We obtained the solution of the nonlinear, driven-dissipative Gross-Pitaevskii equation for a Bose-Einstein condensate trapped in an external asymmetric parabolic potential within the method of the spectral expansion. We found that, in sharp contrast to previous observations, the condensate can spontaneously acquire a solitonlike shape for spatially homogeneous pumping.

View Article and Find Full Text PDF

We propose a design of a Y-shaped electrically controlled optical switch based on the studies of propagation of an exciton-polariton condensate in a patterned optical microcavity with an embedded quantum well. The polaritons are driven by a time-independent force due to the microcavity wedge shape and by a time-dependent drag force owing to the interaction of excitons in a quantum well and the electric current running in a neighboring quantum well. It is demonstrated that by applying the drag force one can direct more than 90% of the polariton flow toward the desired branch of the switch with no hysteresis.

View Article and Find Full Text PDF

The superfluid phase and Coulomb drag effect caused by the pairing in a system of spatially separated electrons and holes in two coaxial cylindrical nanotubes are predicted. It is found that the drag resistance as a function of temperature experiences a jump at the critical temperature and can be used for the manifestation of the superfluid transition. It is demonstrated that at sufficiently low temperatures the order parameter and free energy density exhibit a kink due to the electron-hole asymmetry that is controlled by the radii of the nanotubes.

View Article and Find Full Text PDF

A novel type of one-dimensional (1D) photonic crystal formed by an array of periodically located stacks of alternating graphene and dielectric stripes embedded into a background dielectric medium is proposed. The wave equation for the electromagnetic wave propagating in such a structure is solved in the framework of the Kronig-Penney model. The frequency band structure of the 1D graphene-based photonic crystal is obtained analytically as a function of the filling factor and the thickness of the dielectric between the graphene stripes.

View Article and Find Full Text PDF

The theory for spontaneous coherence of short-lived quasiparticles in two-dimensional excitonic systems is reviewed, in particular, quantum wells (QWs) and graphene layers (GLs) embedded in microcavities. Experiments with polaritons in an optical microcavity have already shown evidence of Bose-Einstein condensation (BEC) in the lowest quantum state in a harmonic trap. The theory of BEC and superfluidity of the microcavity excitonic polaritons in a harmonic potential trap is presented.

View Article and Find Full Text PDF

The collective properties of different quasiparticles in various graphene-based structures in a high magnetic field have been studied. We predict Bose-Einstein condensation (BEC) and the superfluidity of 2D spatially indirect magnetoexcitons in a two-layer graphene. The superfluid density and the temperature of the Kosterlitz-Thouless phase transition are shown to be increasing functions of the excitonic density but decreasing functions of a magnetic field and the interlayer separation.

View Article and Find Full Text PDF