Millions of people worldwide suffer from musculoskeletal damage, thus using the largest proportion of rehabilitation services. The limited self-regenerative capacity of bone and cartilage tissues necessitates the development of functional biomaterials. Magnetoactive materials are a promising solution due to clinical safety and deep tissue penetration of magnetic fields (MFs) without attenuation and tissue heating.
View Article and Find Full Text PDFThe ability of materials to adhere bacteria on their surface is one of the most important aspects of their development and application in bioengineering. In this work, the effect of the properties of films and electrospun scaffolds made of composite materials based on biosynthetic poly(3-hydroxybutyrate) (PHB) with the addition of magnetite nanoparticles (MNP) and their complex with graphene oxide (MNP/GO) on the adhesion of and under the influence of a low-frequency magnetic field and without it was investigated. The physicochemical properties (crystallinity; surface hydrophilicity) of the materials were investigated by X-ray structural analysis, differential scanning calorimetry and "drop deposition" methods, and their surface topography was studied by scanning electron and atomic force microscopy.
View Article and Find Full Text PDFMagnetoelectric (ME) small-scale robotic devices attract great interest from the scientific community due to their unique properties for biomedical applications. Here, novel ME nano hetero-structures based on the biocompatible magnetostrictive MnFe O (MFO) and ferroelectric Ba Ca Zr Ti O (BCZT) are developed solely via the hydrothermal method for the first time. An increase in the temperature and duration of the hydrothermal synthesis results in increasing the size, improving the purity, and inducing morphology changes of MFO nanoparticles (NPs).
View Article and Find Full Text PDFPiezoelectric materials are promising for biomedical applications because they can provide mechanical or electrical stimulations via converse or direct piezoelectric effects. The stimulations have been proven to be beneficial for cell proliferation and tissue regeneration. Recent reports showed that doping different contents of reduced graphene oxide (rGO) or polyaniline (PANi) into biodegradable polyhydroxybutyrate (PHB) enhanced their piezoelectric response, showing potential for biomedical applications.
View Article and Find Full Text PDFThis is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d.
View Article and Find Full Text PDFThis is a comprehensive study on the reinforcement of electrospun poly(3-hydroxybutyrate) (PHB) scaffolds with a composite filler of magnetite-reduced graphene oxide (FeO-rGO). The composite filler promoted the increase of average fiber diameters and decrease of the degree of crystallinity of hybrid scaffolds. The decrease in the fiber diameter enhanced the ductility and mechanical strength of scaffolds.
View Article and Find Full Text PDFMagnetically responsive composite polymer scaffolds have good potential for a variety of biomedical applications. In this work, electrospun composite scaffolds made of polyhydroxybutyrate (PHB) and magnetite (FeO) particles (MPs) were studied before and after degradation in either PBS or a lipase solution. MPs of different sizes with high saturation magnetization were synthesized by the coprecipitation method followed by coating with citric acid (CA).
View Article and Find Full Text PDFNovel hybrid magnetoactive composite scaffolds based on poly(3-hydroxybutyrate) (PHB), gelatin, and magnetite (FeO) were fabricated by electrospinning. The morphology, structure, phase composition, and magnetic properties of composite scaffolds were studied. Fabrication procedures of PHB/gelatin and PHB/gelatin/FeO scaffolds resulted in the formation of both core-shell and ribbon-shaped structure of the fibers.
View Article and Find Full Text PDFAs the next generation of materials for bone reconstruction, we propose a multifunctional bioactive platform based on biodegradable piezoelectric polyhydroxybutyrate (PHB) fibrous scaffolds for tissue engineering with drug delivery capabilities. To use the entire surface area for local drug delivery, the scaffold surface was uniformly biomineralized with biocompatible calcium carbonate (CaCO) microparticles in a vaterite-calcite polymorph mixture. CaCO-coated PHB scaffolds demonstrated a similar elastic modulus compared to that of pristine one.
View Article and Find Full Text PDFIn this study, hybrid composites based on β-alloy Ti-Nb and oxide nanotubes (NTs) have been successfully prepared. NTs of different sizes were grown on Ti-Nb substrates with different Nb contents (5, 25, and 50 wt %) via electrochemical anodization at 30 and 60 V. Scanning electron microscopy imaging revealed that vertically aligned nanotubular structures form on the surface of Ti-Nb alloy substrates and influence Nb content in alloys based on NT length.
View Article and Find Full Text PDFAntibiotic resistance of bacteria stimulates the development of new treatment approaches. Piezoelectric-catalysis has attracted much attention due to the possibility to effectively provide antibacterial effect via generation of reactive oxygen species. However, the influence of the surface charge or potential of a piezopolymer on bacteria has not been sufficiently studied so far.
View Article and Find Full Text PDFGrowth factor incorporation in biomedical constructs for their local delivery enables specific pharmacological effects such as the induction of cell growth and differentiation. This has enabled a promising way to improve the tissue regeneration process. However, it remains challenging to identify an appropriate approach that provides effective growth factor loading into biomedical constructs with their following release kinetics in a prolonged manner.
View Article and Find Full Text PDFHerein TiO nanotubes (NTs) were fabricated via electrochemical anodization and coated with silver and calcium phosphate (CaP) nanoparticles (NPs) by electrophoretic deposition. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) revealed that Ag and CaP NPs were successfully deposited onto the TiO NTs. Using X-ray diffraction, only anatase and Ti were observed after deposition of Ag and CaP NPs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
The incorporation of bioactive compounds onto polymer fibrous scaffolds with further control of drug release kinetics is essential to improve the functionality of scaffolds for personalized drug therapy and regenerative medicine. In this study, polymer and hybrid microcapsules were prepared and used as drug carriers, which are further deposited onto polymer microfiber scaffolds [polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB), and PHB doping with the conductive polyaniline (PANi) of 2 wt % (PHB-PANi)]. The number of immobilized microcapsules decreased with increase in their ζ-potential due to electrostatic repulsion with the negatively charged fiber surface, depending on the polymer used for the scaffold's fabrication.
View Article and Find Full Text PDF