Publications by authors named "Roman Truckenmuller"

Bone-healing complications can occur due to large bone defects or an insufficient bone regeneration capacity. Melt electrowriting (MEW) is a potential candidate for manufacturing synthetic scaffolds that may resolve bone-healing complications. MEW can exploit various biocompatible polymers with a wide range of tissue engineering applications.

View Article and Find Full Text PDF
Article Synopsis
  • - This study explores a novel method for creating vascular networks in 3D microtissues using microwell arrays made from thin polymer films, which can be non-porous or porous.
  • - The researchers use two different configurations for cultivating endothelial cells: one with cells growing inside non-porous wells and another with cells on the outside of porous wells, allowing them to sprout inward.
  • - The results successfully demonstrate vascularization in spheroids made from human stem cells and osteosarcoma cells, indicating that these methods can generate robust vascular networks needed for functional tissue engineering.
View Article and Find Full Text PDF

Enthesitis, the inflammation of the enthesis, which is the point of attachment of tendons and ligaments to bones, is a common musculoskeletal disease. The inflammation often originates from the fibrocartilage region of the enthesis as a consequence of mechanical overuse or -load and consequently tissue damage. During enthesitis, waves of inflammatory cytokines propagate in(to) the fibrocartilage, resulting in detrimental, heterotopic bone formation.

View Article and Find Full Text PDF

Three-dimensional (3D) cell assemblies, such as multicellular spheroids, can be powerful biological tools to closely mimic the complexity of cell-cell and cell-matrix interactions in a native-like microenvironment. However, potential applications of large spheroids are limited by the insufficient diffusion of oxygen and nutrients through the spheroids and, thus, result in the formation of a necrotic core. To overcome this drawback, we present a new strategy based on nanoparticle-coated microparticles.

View Article and Find Full Text PDF

In bone tissue engineering (TE) and regeneration, miniaturized, (sub)millimeter-sized bone models have become a popular trend since they bring about physiological biomimicry, precise orchestration of concurrent stimuli, and compatibility with high-throughput setups and high-content imaging. They also allow efficient use of cells, reagents, materials, and energy. In this review, we describe the state of the art of miniaturized in vitro bone models, or 'mini-bones', describing these models based on their characteristics of (multi)cellularity and engineered extracellular matrix (ECM), and elaborating on miniaturization approaches and fabrication techniques.

View Article and Find Full Text PDF

A challenge in regenerative medicine is creating the three-dimensional organic and inorganic microenvironment of bone, which would allow the study of musculoskeletal disorders and the generation of building blocks for bone regeneration. This study presents a microwell-based platform for creating spheroids of human mesenchymal stromal cells, which are then mineralized using ionic calcium and phosphate supplementation. The resulting mineralized spheroids promote an osteogenic gene expression profile through the influence of the spheroids' biophysical environment and inorganic signaling and require less calcium or phosphate to achieve mineralization compared to a monolayer culture.

View Article and Find Full Text PDF

Tendon is a highly organized tissue that transmits forces between muscle and bone. The architecture of the extracellular matrix of tendon, predominantly from collagen type I, is important for maintaining tenocyte phenotype and function. Therefore, in repair and regeneration of damaged and diseased tendon tissue, it is crucial to restore the aligned arrangement of the collagen type I fibers of the original matrix.

View Article and Find Full Text PDF

Microengineering is increasingly being used for controlling the microenvironment of stem cells. Here, a novel method for fabricating structures with subcellular dimensions in commonly available thermoplastic poly(methyl methacrylate) (PMMA) is shown. Microstructures are produced in PMMA substrates using Deep Ultraviolet lithography, and the effect of different developers is described.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates a new method for culturing human bronchial organoids using a microwell array platform, allowing for better spatial control and monitoring than traditional droplet methods.
  • The approach involves preculturing single cells in a basement membrane extract before transferring them into circular microwells, where they can develop into mature organoids over several weeks.
  • Multiple microscopy techniques were employed to characterize the organoids' growth, morphology, and cellular functions, including their successful manipulation for microinjection within the microwells.
View Article and Find Full Text PDF

Intestinal organoids recapitulate many features of the gastrointestinal tract and have revolutionized studies of intestinal function and disease. However, the restricted accessibility of the apical surface of the organoids facing the central lumen (apical-in) limits studies related to nutrient uptake and drug absorption and metabolism. Here, we demonstrate that pluripotent stem cell (PSC)-derived intestinal organoids with reversed epithelial polarity (apical-out) can successfully recapitulate tissue-specific functions.

View Article and Find Full Text PDF

Three-dimensional cell culture in engineered hydrogels is increasingly used in tissue engineering and regenerative medicine. The transfer of nutrients, gases, and waste materials through these hydrogels is of utmost importance for cell viability and response, yet the translation of diffusion coefficients into practical guidelines is not well established. Here, we combined mathematical modeling, fluorescent recovery after photobleaching, and hydrogel diffusion experiments on cell culture inserts to provide a multiscale practical approach for diffusion.

View Article and Find Full Text PDF

Microbiome is an integral part of the gut and is essential for its proper function. Imbalances of the microbiota can be devastating and have been linked with several gastrointestinal conditions. Current gastrointestinal models do not fully reflect the in vivo situation.

View Article and Find Full Text PDF

The mammalian intestinal epithelium contains more immune cells than any other tissue, and this is largely because of its constant exposure to pathogens. Macrophages are crucial for maintaining intestinal homeostasis, but they also play a central role in chronic pathologies of the digestive system. We developed a versatile microwell-based intestinal organoid-macrophage co-culture system that enables us to recapitulate features of intestinal inflammation.

View Article and Find Full Text PDF

In biomaterials R&D, conventional monolayer cell culture on flat/planar material samples, such as films, is still commonly employed at early stages of the assessment of interactions of cells with candidate materials considered for a biomedical application. In this feasibility study, an approach for the assessment of 3D cell-material interactions through dispersed coaggregation of microparticles from biomaterials into tissue spheroids is presented. Biomaterial microparticles can be created comparatively quickly and easily, allow the miniaturization of the assessment platform, and enable an unhindered remodeling of the dynamic cell-biomaterial system at any time.

View Article and Find Full Text PDF

Cells probe their environment and adapt their shape accordingly the organization of focal adhesions and the actin cytoskeleton. In an earlier publication, we described the relationship between cell shape and physiology, for example, shape-induced differentiation, metabolism, and proliferation in mesenchymal stem cells and tenocytes. In this study, we investigated how these cells organize their adhesive machinery over time when exposed to microfabricated surfaces of different topographies and adhesive island geometries.

View Article and Find Full Text PDF

The inner surface of the intestine is a dynamic system, composed of a single layer of polarized epithelial cells. The development of intestinal organoids was a major breakthrough since they robustly recapitulate intestinal architecture, regional specification and cell composition . However, the cyst-like organization hinders direct access to the apical side of the epithelium, thus limiting their use in functional assays.

View Article and Find Full Text PDF

A comparatively straightforward approach to accomplish more physiological realism in organ-on-a-chip (OoC) models is through substrate geometry. There is increasing evidence that the strongly, microscale curved surfaces that epithelial or endothelial cells experience when lining small body lumens, such as the alveoli or blood vessels, impact their behavior. However, the most commonly used cell culture substrates for modeling of these human tissue barriers in OoCs, ion track-etched porous membranes, provide only flat surfaces.

View Article and Find Full Text PDF

Tissue-culture-ware polystyrene is the gold standard for in vitro cell culture. While microengineering techniques can create advanced cell microenvironments in polystyrene, they require specialized equipment and reagents, which hinder their accessibility for most biological researchers. An economical and easily accessible method is developed and validated for fabricating microstructures directly in polystyrene with sizes approaching subcellular dimensions while requiring minimal processing time.

View Article and Find Full Text PDF

For over a decade, organoids mimicking the development, physiology, and disease of the digestive system have been a topic of broad interest and intense study. Establishing organoid models that recapitulate all distinct regions of the gastrointestinal tract (GIT) has proven challenging since each tissue surrogate requires tailor-made modifications of the original protocol to generate intestinal organoids. In this review, we discuss the challenges and current advances of the GIT organoid models.

View Article and Find Full Text PDF

In vivo cells reside in a complex extracellular matrix (ECM) that presents spatially distributed biochemical and -physical cues at the nano- to micrometer scales. Chemical micropatterning is successfully used to generate adhesive islands to control where and how cells attach and restore cues of the ECM in vitro. Although chemical micropatterning has become a powerful tool to study cell-material interactions, only a fraction of the possible micropattern designs was covered so far, leaving many other possible designs still unexplored.

View Article and Find Full Text PDF

Epithelial membrane transporter kinetics portray an irrefutable role in solute transport in and out of cells. Mechanistic models are used to investigate the transport of solutes at the organ, tissue, cell or membrane scale. Here, we review the recent advancements in using computational models to investigate epithelial transport kinetics on the cell membrane.

View Article and Find Full Text PDF

Research has shown that traditional dialysis is an insufficient long-term therapy for patients suffering from end-stage kidney disease due to the high retention of uremic toxins in the blood as a result of the absence of the active transport functionality of the proximal tubule (PT). The PT's function is defined by the epithelial membrane transporters, which have an integral role in toxin clearance. However, the intricate PT transporter-toxin interactions are not fully explored, and it is challenging to decouple their effects in toxin removal in vitro.

View Article and Find Full Text PDF

There is an increasing need for automated label-free morphometric analysis using brightfield microscopy images of 3D cell culture systems. This requires automated feature detection which can be achieved by improving the image contrast, by reducing the refractive index mismatch in the light path. Here, a novel microcavity platform fabricated using microthermoforming of thin fluorinated ethylene-propylene (FEP) films which match the refractive index of cell culture medium and provide a homogenous background signal intensity is described.

View Article and Find Full Text PDF

Toxin removal by the kidney is deficient in a patient suffering from end-stage kidney disease (ESKD), and current dialysis therapies are insufficient in subsidizing this loss. A bioartificial kidney (BAK) aspires to offer ESKD patients a more effective alternative to dialysis. Mathematical models are necessary to support further developments and improve designs for the BAK before clinical trials.

View Article and Find Full Text PDF

For the majority of patients with severe corneal injury or disease, corneal transplantation is the only suitable treatment option. Unfortunately, the demand for donor corneas greatly exceeds the availability. To overcome shortage issues, a myriad of bioengineered constructs have been developed as mimetics of the corneal stroma over the last few decades.

View Article and Find Full Text PDF