Publications by authors named "Roman Sturm"

This research investigates the mechanical behavior and damage evolution in cross-ply basalt fiber composites subjected to different loading modes. A modified Arcan rig for simultaneous acoustic emission (AE) monitoring was designed and manufactured to apply quasi-isotropic shear, combined tensile and shear loading, and pure tensile loading on specimens with a central notch. Digital image correlation (DIC) was applied for high-resolution strain measurements.

View Article and Find Full Text PDF

This paper investigated the effect of shot peening on the strength and corrosion properties of 6082-T651 aluminium alloy. The microstructure, surface roughness, microhardness, residual stresses, and corrosion behaviour were investigated and compared with those of untreated aluminium alloy. Cracks and delaminations in the surface layer could only be seen on the treated specimens at a working pressure of 4 bar and 8 bar, while no such effect was observed at a working pressure of 1.

View Article and Find Full Text PDF

This study focuses on investigating the fatigue and wear behaviour of carbon fibre reinforced polymer (CFRP) gears, which have shown promising potential as lightweight and high-performance alternatives to conventional gears. The gears were fabricated via an autoclave process using an 8-layer composite made of T300 plain weave carbon fabric and ET445 resin and were tested in pair with a 42CrMo4 steel pinion and under nominal tooth bending stress ranging from 60 to 150 MPa. In-situ temperature monitoring was performed, using an infrared camera, and wear rates were regularly assessed.

View Article and Find Full Text PDF

Methods to predict the fracture of thin carbon fibre-reinforced polymers (CFRPs) under load are of great interest in the automotive industry. The manufacturing of composites involves a high risk of defect occurrence, and the identification of those that lead to failure increases the functional reliability and decreases costs. The performance of CFRPs can be significantly reduced in assembled structures containing stress concentrators.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how acoustic emission measurements can help characterize biocomposites in aviation, using advanced fiber optic sensors for more accurate data collection.
  • Researchers applied a convolutional autoencoder to extract both classic and deep features from AE signals, utilizing various machine learning methods for classification.
  • Findings reveal that combining classic and deep features significantly boosts classification accuracy, with neural networks achieving the highest accuracy at 80.9%, demonstrating the effectiveness of complex models over simpler ones.
View Article and Find Full Text PDF

This paper investigates the corrosion of shot peened AA7075 aluminium alloys aged at different temperatures. The surface integrity of the hardened layer was evaluated with SEM, EDS, differential scanning calorimetry, hardness, and roughness measurements, and in the end also with corrosion resistance tests. The research results indicated that there were significant differences in precipitates distribution between aluminium alloys artificially aged at different temperatures.

View Article and Find Full Text PDF

NiCrBSi, WC-12Co and NiCrBSi with 30, 40 and 50 wt.% WC-12Co coatings were produced on low carbon steel by laser cladding with an Nd:YAG laser with a multi-jet coaxial cladding-nozzle. The microstructure properties after WC-12Co alloying were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and Vickers hardness tests.

View Article and Find Full Text PDF

The present study investigates the effect of shot peening (SP) on the mechanical properties and surface roughness of 7075 aluminum alloy during different stages and conditions of heat treatment. The mechanical properties were determined by measuring Vickers microhardness profiles and residual stress profiles, while the amount of alloying elements present in the solid solution of the samples under different heat treatment conditions was determined by measuring the electrical conductivity. The results show that the increase in microhardness near the SP surface and the maximum compressive residual stresses are mainly related to the content of alloying elements in the solid solution.

View Article and Find Full Text PDF

The development of advanced materials and technologies based on magnetocaloric Gd and its compounds requires an understanding of the dependency of mechanical properties on their underlying microstructure. Therefore, the aim of the study was to characterize microstructural inhomogeneities in the gadolinium that can be used in magnetocaloric refrigeration systems. Microstructures of magnetocaloric gadolinium cylinders were investigated by light microscopy and FE-SEM (Field Emission Scanning Electron Microscopy), EDS (Energy-dispersive X-ray Spectroscopy), and BSE (Back-scattered Electrons) in both the extrusion and the extrusion-transversal directions.

View Article and Find Full Text PDF

This paper proposes the study and implementation of a sensor with a metamaterial (MM) lens in electromagnetic nondestructive evaluation (eNDE). Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR) has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range.

View Article and Find Full Text PDF