Publications by authors named "Roman Sivko"

Trace metal Cu and carbonaceous airborn particulate matter (PM) are dangerous neuropollutants. Here, the ability of Cu to modulate the neurotoxicity caused by water-suspended wood smoke PM preparations (SPs) and vice versa was examined using presynaptic rat cortex nerve terminals. Interaction of Cu and SPs, changes of particle size and surface properties were shown in the presence of Cu using microscopy, DLS, and IR spectroscopy.

View Article and Find Full Text PDF

Recent experimental and epidemiologic investigations have revealed that the central nervous system is a target for vitamin D3 action and also linked vitamin D3 deficiency to Alzheimer's and Parkinson's disease, autism and dementia. Abnormal homeostasis of glutamate and GABA and signaling disbalance are implicated in the pathogenesis of major neurological diseases. Here, key transport characteristics of glutamate and GABA were analysed in presynaptic nerve terminals (synaptosomes) isolated from the cortex of vitamin D3 deficient (VDD) rats.

View Article and Find Full Text PDF

Carbon dots (C-dots), a recently discovered class of fluorescent nano-sized particles with pure carbon core, have great bioanalytical potential. Neuroactive properties of fluorescent C-dots obtained from β-alanine by microwave heating were assessed based on the analysis of their effects on the key characteristics of GABA- and glutamatergic neurotransmission in isolated rat brain nerve terminals. It was found that C-dots (40-800 μg/ml) in dose-dependent manner: (1) decreased exocytotic release of [(3)H]GABA and L-[(14)C]glutamate; (2) reduced acidification of synaptic vesicles; (3) attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake of [(3)H]GABA and L-[(14)C]glutamate; (4) increased the ambient level of the neurotransmitters, nevertheless (5) did not change significantly the potential of the plasma membrane of nerve terminals.

View Article and Find Full Text PDF

The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed.

View Article and Find Full Text PDF

The harmful effects of lunar dust (LD) on directly exposed tissues are documented in the literature, whereas researchers are only recently beginning to consider its effects on indirectly exposed tissues. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and transported to the central nervous system. The neurotoxic potential of LD and martian dust (MD) has not yet been assessed.

View Article and Find Full Text PDF

Exposure to Cd(2+) and Pb(2+) has neurotoxic consequences for human health and may cause neurodegeneration. The study focused on the analysis of the presynaptic mechanisms underlying the neurotoxic effects of non-essential heavy metals Cd(2+) and Pb(2+). It was shown that the preincubation of rat brain nerve terminals with Cd(2+) (200 μM) or Pb(2+) (200 μM) resulted in the attenuation of synaptic vesicles acidification, which was assessed by the steady state level of the fluorescence of pH-sensitive dye acridine orange.

View Article and Find Full Text PDF

The effect of the cholesterol-depleting agent methyl-β-cyclodextrin (MβCD) on exocytotic, transporter-mediated, tonic release, the ambient level and uptake of L-[(14)C]glutamate was assessed in rat brain synaptosomes using different methodological approaches of MβCD application. The addition of 15 mM MβCD to synaptosomes (the acute treatment, AT) immediately resulted in the extraction of cholesterol and in a two times increase in the extracellular L-[(14)C]glutamate level. When 15 mM MβCD was applied to synaptosomes for 35 min followed by washing of the acceptor (the long-term pretreatment, LP), this level was only one-third higher than in the control.

View Article and Find Full Text PDF

We report that cholesterol depletion with methyl-beta-cyclodextrin (MbetaCD) acutely applied to rat brain synaptosomes is accompanied by an immediate increase in transporter-mediated glutamate release and decrease in exocytotic release. To clarify the possible mechanisms underlying these phenomena, we investigated the influence of MbetaCD on synaptic vesicle acidification and exo/endocytotic process in nerve terminals. As shown by acridine orange fluorescence measurements, the application of MbetaCD to synaptosomes, as well as to isolated synaptic vesicles, led to the gradual leakage of the protons from the vesicles, whereas the application of MbetaCD complexed with cholesterol stimulated additional vesicle acidification and an increase in Ca2+-dependent exocytotic response.

View Article and Find Full Text PDF

The low level of ambient glutamate is important for the brain's spontaneous activity and proper synaptic transmission. Cholesterol deficiency has been implicated in the pathogenesis of several neurodegenerative disorders. It was examined whether membrane cholesterol modulated the extracellular glutamate level in nerve terminals and the processes responsible for its maintenance.

View Article and Find Full Text PDF