Publications by authors named "Roman Pohrt"

Herein, we describe the design of a laboratory setup operating as a high-precision tribometer. The whole design procedure is presented, starting with a concept, followed by the creation of an exact 3D model and final assembly of all functional parts. The functional idea of the setup is based on a previously designed device that was used to perform more simple tasks.

View Article and Find Full Text PDF

The unilateral axisymmetric frictionless adhesive contact problem for a toroidal indenter and an elastic half-space is considered in the framework of the Johnson-Kendall-Roberts theory. In the case of a semi-fixed annular contact area, when one of the contact radii is fixed, while the other varies during indentation, we obtain the asymptotic solution of the adhesive contact problem based on the solution of the corresponding unilateral non-adhesive contact problem. In particular, the adhesive contact problem for Barber's concave indenter is considered in detail.

View Article and Find Full Text PDF

If two elastic bodies with rough surfaces are first pressed against each other and then loaded tangentially, sliding will occur at the boundary of the contact area while the inner parts may still stick. With increasing tangential force, the sliding parts will expand while the sticking parts shrink and finally vanish. In this paper, we study the fractions of the contact area, tangential force and tangential stiffness, associated with the sticking portion of the contact area, as a function of the total applied tangential force up to the onset of full sliding.

View Article and Find Full Text PDF

We investigate the contact stiffness of an elastic half-space and a rigid indenter with randomly rough surface having a power spectrum C2D(q)proportional q(-2H-2), where q is the wave vector. The range of H[symbol: see text] is studied covering a wide range of roughness types from white noise to smooth single asperities. At low forces, the contact stiffness is in all cases a power law function of the normal force with an exponent α.

View Article and Find Full Text PDF

It was shown earlier that some classes of three-dimensional contact problems can be mapped onto one-dimensional systems without loss of essential macroscopic information, thus allowing for immense acceleration of numerical simulations. The validity of this method of reduction of dimensionality has been strictly proven for contact of any axisymmetric bodies, both with and without adhesion. In [T.

View Article and Find Full Text PDF

Using the boundary element method, we calculate the normal interfacial stiffness and constriction resistance of two elastic bodies with randomly rough surfaces and varying fractal dimensions. The contact stiffness as a function of the applied normal force can be approximated by a power law, with an exponent varying from 0.51 to 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8n1actvl88sds1ojuc3sv7fdarv4orau): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once