Publications by authors named "Roman Pishchalnikov"

The possibility of pigment detection and recognition in different environments such as solvents or proteins is a challenging, and at the same time demanding, task. It may be needed in very different situations: from the nondestructive in situ identification of pigments in paintings to the early detection of fungal infection in major agro-industrial crops and products. So, we propose a prototype method, the key feature of which is a procedure analyzing the lineshape of a spectrum.

View Article and Find Full Text PDF

In this paper, a procedure for obtaining undistorted high derivatives (up to the eighth order) of the optical absorption spectra of biomolecule pigments has been developed. To assess the effectiveness of the procedure, the theoretical spectra of bacteriochlorophyll , chlorophyll , spheroidene, and spheroidenone were simulated by fitting the experimental spectra using the differential evolution algorithm. The experimental spectra were also approximated using sets of Gaussians to calculate the model absorption spectra.

View Article and Find Full Text PDF

Our analysis of the X-ray crystal structure of canthaxanthin (CAN) showed that its ketolated β-ionone rings can adopt two energetically equal, but structurally distinct puckers. Quantum chemistry calculations revealed that the potential energy surface of the β-ionone ring rotation over the plane of the conjugated π-system in carotenoids depends on the pucker state of the β-ring. Considering different pucker states and β-ionone ring rotation, we found six separate local minima on the potential energy surface defining the geometry of the keto-β-ionone ring-two cis and one trans orientation for each of two pucker states.

View Article and Find Full Text PDF

Despite the progress made in the treatment of nephrolithiasis, the existing methods of renal calculi destruction are not ideal and have both advantages and disadvantages. Considering the process of high-frequency glow discharge formation on the surface of an electrode and in an electrolyte solution, we obtained the results on the destruction of renal calculi in vitro. It was shown that the destruction of kidney stones by glow discharge plasma was caused by several processes-the plasma induced effect of hydrated electrons and shock wave effect of the electrolyte stimulated by electrical breakdowns in the plasma.

View Article and Find Full Text PDF

A method for obtaining a stable colloidal solution of silver oxide nanoparticles has been developed using laser ablation. The method allows one to obtain nanoparticles with a monomodal size distribution and a concentration of more than 10 nanoparticles per mL. On the basis of the obtained nanoparticles and the PLGA polymer, a nanocomposite material was manufactured.

View Article and Find Full Text PDF

Considering bacteriochlorophyll molecules embedded in the protein matrix of the light-harvesting complexes of purple bacteria (known as LH2 and LH1-RC) as examples of systems of interacting pigment molecules, we investigated the relationship between the spatial arrangement of the pigments and their exciton transition moments. Based on the recently reported crystal structures of LH2 and LH1-RC and the outcomes of previous theoretical studies, as well as adopting the Frenkel exciton Hamiltonian for two-level molecules, we performed visualizations of the LH2 and LH1 exciton transition moments. To make the electron transition moments in the exciton representation invariant with respect to the position of the system in space, a system of pigments must be translated to the center of mass before starting the calculations.

View Article and Find Full Text PDF

The effects of different spectral compositions of light-emitting diode (LED) sources and fertilizer containing biologically active silicon (Si) in the nutrient solution on morphological and physiological plant response were studied. Qualitative indicators and the productivity of plants of a red-leaved and a green-leaved lettuce were estimated. Lettuce was grown applying low-volume hydroponics in closed artificial agroecosystems.

View Article and Find Full Text PDF

Variation potential (VP) is an important long-distance electrical signal in higher plants that is induced by local damages, influences numerous physiological processes, and participates in plant adaptation to stressors. The transmission of increased hydraulic pressure through xylem vessels is the probable mechanism of VP propagation in plants; however, the rates of the pressure transmission and VP propagation can strongly vary. We analyzed this problem on the basis of a simple mathematical model of the pressure distribution along a xylem vessel, which was approximated by a tube with a pressure gradient.

View Article and Find Full Text PDF

Cyanobacterial photosystem I (PSI) constitutes monomeric and trimeric pigment-protein complexes whose optical properties are marked by the presence of long-wavelength absorption bands. In spite of numerous experimental studies, the nature of these bands is still under debate and requires intensive theoretical analysis. Collecting together the data of linear spectroscopy and single-molecule spectroscopy (SMS) of PSI from Arthrospira platensis, we performed quantum modeling of the optical response based on molecular exciton theory (ET) and the multimode Brownian oscillator model (MBOM).

View Article and Find Full Text PDF

To prevent irreversible damage caused by an excess of incident light, the photosynthetic machinery of many cyanobacteria uniquely utilizes the water-soluble orange carotenoid protein (OCP) containing a single keto-carotenoid molecule. This molecule is non-covalently embedded into the two OCP domains which are interconnected by a flexible linker. The phenomenon of OCP photoactivation, causing significant changes in carotenoid absorption in the orange and red form of OCP, is currently being thoroughly studied.

View Article and Find Full Text PDF

Based on single molecule spectroscopy analysis and our preliminary theoretical studies, the linear and fluorescence spectra of the PSI trimer from with different realizations of the static disorder were modeled at cryogenic temperature. Considering the previously calculated spectral density of chlorophyll, an exciton model for the PSI monomer and trimer including the red antenna states was developed taking into account the supposed similarity of PSI antenna structures from , , and . The red Chls in the PSI monomer were assumed to be in the nearest proximity of the reaction center.

View Article and Find Full Text PDF