Publications by authors named "Roman Perez"

Among the different layers of the cornea, the corneal endothelium, which is composed of corneal endothelial cells (CEC), plays a key role in the maintenance of cornea transparency. Based on the donor shortages and the limitations associated with transplantation, in this work we have developed collagen hydrogels with different patterned structures on the surface to provide topographies in ranges similar to the natural environment that CEC sense. This aimed at stimulating cells to maintain a typical CEC phenotype and provide alternatives to corneal transplantation.

View Article and Find Full Text PDF

Silica-based scaffolds are promising in Tissue Engineering by enabling personalized scaffolds, boosting exceptional bioactivity and osteogenic characteristics. Moreover, silica materials are highly tunable, allowing for controlled drug release to enhance tissue regeneration. In this study, we developed a 3D printable silica material with controlled mesoporosity, achieved through the sol-gel reaction of tetraethyl orthosilicate (TEOS) at mild temperatures with the addition of different calcium concentrations.

View Article and Find Full Text PDF

This study has been carried out to analyze the influence of the design of three geometric elements (wall thickness, platform width, and chamfer) of Ti-base abutments on the distribution of stresses and strains on the implant, the retention screw, the Ti base, and the bone. This study was carried out using FEA, analyzing eight different Ti-base models based on combinations of the geometric factors under study. The model was adapted to the standard Dynamic Loading Test For Endosseous Dental Implants.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create a refined ex vivo endodontic biofilm model by using human teeth, computer-guided design, and 3D printing to improve the testing of antibacterial treatments for dental infections.
  • Various cutting methods were compared, with computer-aided guided cutting (CGC) showing superior precision and liquid tightness, while allowing for the development of stable and active Enterococcus faecalis biofilms over 21 days.
  • The new model demonstrated a more reliable way to assess the effectiveness of antibacterial treatments, revealing that while standard treatments could completely eradicate bacteria, commercial disinfectants had varying success rates in the new ex vivo setup.
View Article and Find Full Text PDF

Background: Recent evidence has linked air pollution with frailty, yet little is known about the role of NO2 in this association. Our aim was to assess the association between frailty and NO2 air concentrations in Mexican older adults.

Methods: We used georeferenced data from the population-based Nutrition and Health Survey in Mexico (NHNS) 2021, representative of national and subnational regions, to measure a frailty index based on 31 health deficits in adults aged 50 and older.

View Article and Find Full Text PDF

Guided bone regeneration (GBR) is a widely used procedure that prevents the fast in-growth of soft tissues into bone defect. Among the different types of membranes, the use of collagen membranes is the gold standard. However, these membranes are implanted in tissue location where a severe acute inflammation will occur and can be negatively affected.

View Article and Find Full Text PDF
Article Synopsis
  • In dengue-endemic regions, controlling transmission is challenging due to the need for consistent and widespread intervention efforts.
  • Researchers aimed to identify areas with high dengue virus (DENV) infection rates and analyze their relationship with local microclimatic factors in two towns in southern Mexico.
  • The study found spatial clusters of DENV cases linked to land surface temperature and soil humidity, providing valuable insights for health authorities to target dengue prevention and control measures effectively.
View Article and Find Full Text PDF

Due to the high failure rates associated to endodontic disinfection, this study aimed to investigate the antibacterial properties of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with Ca(OH) for endodontic disinfection procedures. Ca(OH) NPs production and physicochemical characterization were carried out as well as multiple antibacterial tests using three bacterial strains and an ex vivo model of endodontic infection with extracted human teeth. Agar diffusion test and broth dilution determined the inhibition growth zones (n = 5) and the minimal inhibitory concentration (MIC, n = 5), respectively.

View Article and Find Full Text PDF

Printability in 3D extrusion bioprinting encompasses extrudability, filament formation, and shape fidelity. Rheological properties can predict the shape fidelity of printed hydrogels. In particular, tan(δ), the ratio between loss (G'') and storage (G') modulus (G''/G'), is a powerful indicator of printability.

View Article and Find Full Text PDF

The polymeric nanofiber may interact and control certain regeneration processes at the molecular level to repair damaged tissues. This research focuses on the development of characterization and antibacterial capabilities of polyvinyl alcohol (PVA)/chitosan (CS) nanofibres containing fucoidan (FUC) for tissue engineering as a skin tissue substitute. A control group consisting of 13% PVA/(0.

View Article and Find Full Text PDF

Soft tissue defects or pathologies frequently necessitate the use of biomaterials that provide the volume required for subsequent vascularization and tissue formation as autrografts are not always a feasible alternative. Supramolecular hydrogels represent promising candidates because of their 3D structure, which resembles the native extracellular matrix, and their capacity to entrap and sustain living cells. Guanosine-based hydrogels have emerged as prime candidates in recent years since the nucleoside self-assembles into well-ordered structures like G-quadruplexes by coordinating K ions and π-π stacking, ultimately forming an extensive nanofibrillar network.

View Article and Find Full Text PDF

It is widely known that bone has intrinsic capacity to self-regenerate after injury. However, the physiological regeneration process can be impaired when there is an extensive damage. One of the main reasons is due to the inability to establish a new vascular network that ensures oxygen and nutrient diffusion, leading to a necrotic core and non-junction of bone.

View Article and Find Full Text PDF

The influence of the surface topography of dental implants has been studied to optimize titanium surfaces in order to improve osseointegration. Different techniques can be used to obtain rough titanium, however, their effect on wettability, surface energy, as well as bacterial and cell adhesion and differentiation has not been studied deeply. Two-hundred disks made of grade 4 titanium were subjected to different treatments: machined titanium (MACH), acid-attacked titanium (AE), titanium sprayed with abrasive alumina particles under pressure (GBLAST), and titanium that has been treated with GBLAST and then subjected to AE (GBLAST + AE).

View Article and Find Full Text PDF

One of the main problems in oral implantology today is peri-implantitis, which affects almost 20% of dental implants placed in patients. One of the most commonly used techniques to eliminate bacterial biofilm is the implantoplasty, that consists of the mechanical modification of the implant surface topography followed by treatments with chemical reagents for decontamination. In this study, the main aim is to evaluate the use of two different chemical treatments based on hypochlorous acid (HClO) and hydrogen peroxide (HO).

View Article and Find Full Text PDF

Tissue defects can lead to serious health problems and often require grafts or transplants to repair damaged soft tissues. However, these procedures can be complex and may not always be feasible due to a lack of available tissue. Hydrogels have shown potential as a replacement for tissue grafts due to their ability to support cell survival and encapsulate biomolecules such as growth factors.

View Article and Find Full Text PDF

Introduction: Neck pain is one of the most frequent reasons for consultation in primary care. Clinicians evaluate different variables, including movement and cervical strength, to determine the prognosis of patients. Usually, the tools employed for this purpose are expensive and bulky, or more than one is needed.

View Article and Find Full Text PDF

Tissue engineering focuses on the development of materials as biosubstitutes that can be used to regenerate, repair, or replace damaged tissues. Alongside this, 3D printing has emerged as a promising technique for producing implants tailored to specific defects, which in turn increased the demand for new inks and bioinks. Especially supramolecular hydrogels based on nucleosides such as guanosine have gained increasing attention due to their biocompatibility, good mechanical characteristics, tunable and reversible properties, and intrinsic self-healing capabilities.

View Article and Find Full Text PDF

Malaria is currently an endemic disease in Mexico. The country joined the WHO's E-25 initiative for the elimination of Plasmodium vivax to achieve elimination and certification within the established period. Having a Web-based information system was, therefore, deemed necessary to assist in the detection, investigation, and elimination of transmission in the foci, as well as for the timely treatment of malaria-positive cases.

View Article and Find Full Text PDF

Bone grafting is one of the most commonly performed treatments for bone healing or repair. Autografts, grafts from the same patient, are the most frequently used bone grafts because they can provide osteogenic cells and growth factors at the site of the implant with reduced risk of rejection or transfer of diseases. Nevertheless, this type of graft presents some drawbacks, such as pain, risk of infection, and limited availability.

View Article and Find Full Text PDF

Supramolecular hydrogels are of great interest in tissue scaffolding, diagnostics, and drug delivery due to their biocompatibility and stimuli-responsive properties. In particular, nucleosides are promising candidates as building blocks due to their manifold noncovalent interactions and ease of chemical modification. Significant progress in the field has been made over recent years to allow the use of nucleoside-based supramolecular hydrogels in the biomedical field, namely drug delivery and 3D bioprinting.

View Article and Find Full Text PDF

Corneal endothelium defects are one of the leading causes of blindness worldwide. The actual treatment is transplantation, which requires the use of human cadaveric donors, but it faces several problems, such as global shortage of donors. Therefore, new alternatives are being developed and, among them, cell therapy has gained interest in the last years due to its promising results in tissue regeneration.

View Article and Find Full Text PDF

This study aimed to find the optimum mechanical characteristics of the restorative materials for the manufacture of implant crowns subjected to impact loading when different combinations of materials are used for the inner and outer crown. Several combinations of external-internal crown restorative materials were analyzed. The dynamic stresses at eight different zones of a dental implant subjected to an impact load and the influence of several mechanical properties, such as the Young's modulus, Poisson's ratio, density, and initial velocity, were analyzed and compared.

View Article and Find Full Text PDF

The techniques used in oral implantology to remove bacterial biofilm from the surface of implants by machining the titanium surface (implantoplasty) or by placing rough dental implants through friction with the cortical bone generate a large release of particles. In this work, we performed a simulation of particle generation following clinical protocols. The particles were characterized for commercially pure titanium with particle sizes of 5, 10, 15, and 30 μm.

View Article and Find Full Text PDF

Cardiovascular diseases are considered one of the worldwide causes of death, with atherosclerosis being the most predominant. Nowadays, the gold standard treatment is blood vessel replacement by bypass surgery; however, autologous source is not always possible. Thereby, tissue-engineered blood vessels (TEBVs) are emerging as a potential alternative source.

View Article and Find Full Text PDF

Macrophages have been deemed crucial for correct tissue regeneration, which is a complex process with multiple overlapping phases, including inflammation. Previous studies have suggested that divalent ions are promising cues that can induce an anti-inflammatory response, since they are stable cues that can be released from biomaterials. However, their immunomodulatory potential is limited in a pro-inflammatory environment.

View Article and Find Full Text PDF