Publications by authors named "Roman Orus"

This article introduces a novel approach to perform the simulation of a single qubit quantum-inspired algorithm using laser beams. Leveraging the polarization states of photonic qubits, and inspired by variational quantum eigensolvers, we develop a variational quantum-inspired algorithm implementing a clustering procedure following the approach proposed by some of us in SciRep 13, 13284 (2023). A key aspect of our research involves the utilization of non-orthogonal states within the photonic domain, harnessing the potential of polarization schemes to reproduce unitary circuits.

View Article and Find Full Text PDF

Deep neural networks (NNs) encounter scalability limitations when confronted with a vast array of neurons, thereby constraining their achievable network depth. To address this challenge, we propose an integration of tensor networks (TN) into NN frameworks, combined with a variational DMRG-inspired training technique. This in turn, results in a scalable tensor neural network (TNN) architecture capable of efficient training over a large parameter space.

View Article and Find Full Text PDF

The adaptive derivative-assembled pseudo-Trotter variational quantum eigensolver (ADAPT-VQE) has emerged as a pivotal promising approach for electronic structure challenges in quantum chemistry with noisy quantum devices. Nevertheless, to surmount existing technological constraints, this study endeavors to enhance ADAPT-VQE's efficacy. Leveraging insights from the electronic structure theory, we concentrate on optimizing state preparation without added computational burden and guiding ansatz expansion to yield more concise wave functions with expedited convergence toward exact solutions.

View Article and Find Full Text PDF

The entanglement entropy is a unique probe to reveal universal features of strongly interacting many-body systems. In two or more dimensions these features are subtle, and detecting them numerically requires extreme precision, a notoriously difficult task. This is especially challenging in models of interacting fermions, where many such universal features have yet to be observed.

View Article and Find Full Text PDF

Here we present a quantum algorithm for clustering data based on a variational quantum circuit. The algorithm allows to classify data into many clusters, and can easily be implemented in few-qubit Noisy Intermediate-Scale Quantum devices. The idea of the algorithm relies on reducing the clustering problem to an optimization, and then solving it via a Variational Quantum Eigensolver combined with non-orthogonal qubit states.

View Article and Find Full Text PDF

Current universal quantum computers have a limited number of noisy qubits. Because of this, it is difficult to use them to solve large-scale complex optimization problems. In this paper we tackle this issue by proposing a quantum optimization scheme where discrete classical variables are encoded in non-orthogonal states of the quantum system.

View Article and Find Full Text PDF
Article Synopsis
  • Predicting financial crashes in complex networks is a challenging NP-hard problem, meaning it’s hard to find efficient solutions.
  • The authors test a new method using a D-Wave quantum annealer to achieve financial equilibrium by converting a nonlinear financial model into a higher-order binary optimization problem.
  • Their approach involves transforming this optimization problem into a spin Hamiltonian, allowing the quantum annealer to find the ground state, thus setting the stage for using quantum technology in macroeconomic problems.
View Article and Find Full Text PDF

In this paper we propose a hybrid quantum-classical algorithm for dynamic portfolio optimization with minimal holding period. Our algorithm is based on sampling the near-optimal portfolios at each trading step using a quantum processor, and efficiently post-selecting to meet the minimal holding constraint. We found the optimal investment trajectory in a dataset of 50 assets spanning a 1 year trading period using the D-Wave 2000Q processor.

View Article and Find Full Text PDF

Ultracold atoms in optical lattices are one of the most promising experimental setups to simulate strongly correlated systems. However, efficient numerical algorithms able to benchmark experiments at low-temperatures in interesting 3d lattices are lacking. To this aim, here we introduce an efficient tensor network algorithm to accurately simulate thermal states of local Hamiltonians in any infinite lattice, and in any dimension.

View Article and Find Full Text PDF

We develop a strategy for tensor network algorithms that allows to deal very efficiently with lattices of high connectivity. The basic idea is to fine grain the physical degrees of freedom, i.e.

View Article and Find Full Text PDF

Understanding dissipation in 2D quantum many-body systems is an open challenge which has proven remarkably difficult. Here we show how numerical simulations for this problem are possible by means of a tensor network algorithm that approximates steady states of 2D quantum lattice dissipative systems in the thermodynamic limit. Our method is based on the intuition that strong dissipation kills quantum entanglement before it gets too large to handle.

View Article and Find Full Text PDF

Topological order in two-dimensional (2D) quantum matter can be determined by the topological contribution to the entanglement Rényi entropies. However, when close to a quantum phase transition, its calculation becomes cumbersome. Here, we show how topological phase transitions in 2D systems can be much better assessed by multipartite entanglement, as measured by the topological geometric entanglement of blocks.

View Article and Find Full Text PDF

We present a low-energy effective field theory to describe the SO(n) bilinear-biquadratic spin chain. We start with n=6 and construct the effective theory by using six Majorana fermions. After determining various correlation functions, we characterize the phases and establish the relation between the effective theories for SO(6) and SO(5).

View Article and Find Full Text PDF

We investigate the stability of the topological phase of the toric code model in the presence of a uniform magnetic field by means of variational and high-order series expansion approaches. We find that when this perturbation is strong enough, the system undergoes a topological phase transition whose first- or second-order nature depends on the field orientation. When this transition is of second order, it is in the Ising universality class except for a special line on which the critical exponent driving the closure of the gap varies continuously, unveiling a new topological universality class.

View Article and Find Full Text PDF

We investigate the anisotropic quantum orbital compass model on an infinite square lattice by means of the infinite projected entangled-pair state algorithm. For varying values of the Jx and Jz coupling constants of the model, we approximate the ground state and evaluate quantities such as its expected energy and local order parameters. We also compute adiabatic continuations of the ground state, and show that several ground states with different local properties coexist at Jx=Jz.

View Article and Find Full Text PDF

We establish a relation between several entanglement properties in the Lipkin-Meshkov-Glick model, which is a system of mutually interacting spins embedded in a magnetic field. We provide analytical proofs that the single-copy entanglement and the global geometric entanglement of the ground state close to and at criticality behave as the entanglement entropy. These results are in deep contrast to what is found in one- dimensional spin systems where these three entanglement measures behave differently.

View Article and Find Full Text PDF

Under successive renormalization group transformations applied to a quantum state |Psi of finite correlation length xi, there is typically a loss of entanglement after each iteration. How good it is then to replace |Psi by a product state at every step of the process? In this Letter we give a quantitative answer to this question by providing first analytical and general proofs that, for translationally invariant quantum systems in one spatial dimension, the global geometric entanglement per region of size L>>xi diverges with the correlation length as (c/12)log(xi/epsilon) close to a quantum critical point with central charge c, where is a cutoff at short distances. Moreover, the situation at criticality is also discussed and an upper bound on the critical global geometric entanglement is provided in terms of a logarithmic function of L.

View Article and Find Full Text PDF

For any D-dimensional quantum lattice system, the fidelity between two ground state many-body wave functions is mapped onto the partition function of a D-dimensional classical statistical vertex lattice model with the same lattice geometry. The fidelity per lattice site, analogous to the free energy per site, is well defined in the thermodynamic limit and can be used to characterize the phase diagram of the model. We explain how to compute the fidelity per site in the context of tensor network algorithms, and demonstrate the approach by analyzing the two-dimensional quantum Ising model with transverse and parallel magnetic fields.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1nrl6o3gcbfrss2ifr4e4t7riabjf8aq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once