The electron-donating and electron-accepting properties of N-heterocyclic carbene (NHC) ligands play a pivotal role in governing their interactions with transition metals, thereby influencing the selectivity and reactivity in catalytic processes. Herein, we report the synthesis of Pd/NHC and Ni/NHC complexes, wherein the electronic parameters of the NHC ligands were systematically varied. By performing a series of controlled structure modifications, we elucidated the influence of the σ-donor and π-acceptor properties of NHC ligands on interactions with the transition metals Pd and Ni and, consequently, the catalytic behavior of Pd and Ni complexes.
View Article and Find Full Text PDFPd/NHC complexes (NHCs - -heterocyclic carbenes) with electron-withdrawing halogen groups were prepared by developing an optimized synthetic procedure to access imidazolium salts and the corresponding metal complexes. Structural X-ray analysis and computational studies have been carried out to evaluate the effect of halogen and CF substituents on the Pd-NHC bond and have provided insight into the possible electronic effects on the molecular structure. The introduction of electron-withdrawing substituents changes the ratio of σ-/π-contributions to the Pd-NHC bond but does not affect the Pd-NHC bond energy.
View Article and Find Full Text PDFThe key problem of the instability of fluorine-containing diazadienes was addressed to perform the efficient synthesis of imidazolium salts containing fluorine substituents in the aryl groups. The subsequent reaction of fluorine-containing imidazolium compounds (NHC) with palladium salts under simple conditions afforded new Pd/NHC complexes. Computational and structural studies were performed to assess the effect of fluorine on the Pd-NHC bond and gave insight into the electronic effects in the molecule.
View Article and Find Full Text PDF