Comp Immunol Microbiol Infect Dis
January 2024
Streptococcus equi subsp. zooepidemicus is an emerging pathogen of pigs, resulting in high-mortality outbreaks of septicaemia and abortions. Here, we investigated the early pathogenesis of S.
View Article and Find Full Text PDFSwine dysentery (SD) is a worldwide production-limiting disease of growing-finishing pigs in commercial farms. The importance of the large intestinal microbiota in the swine dysentery pathogenesis has been established, but not well characterized. The objective of this study was to characterize the fecal bacterial microbiota of pigs immediately prior to developing clinical signs of swine dysentery.
View Article and Find Full Text PDFSwine dysentery (SD) caused by pathogenic Brachyspira spp. is an economic challenge for the swine industry. In research settings, experimental reproduction of swine dysentery typically relies on intragastric inoculation which has shown variable success.
View Article and Find Full Text PDFSwine dysentery is causally associated with Brachyspira hampsonii and B. hyodysenteriae infection. Given the importance of transmission models in understanding re-emergent diseases and developing control strategies such as vaccines, the objective of this experiment was to evaluate two experimental natural transmission (seeder pig) models in grower pigs, each with 24 animals.
View Article and Find Full Text PDFIn 2019, Streptococcus equi subsp. zooepidemicus was recognized as an emerging pathogen of swine, associated with sudden deaths, increased abortion rates and septicaemia. Limited data are available regarding this disease in pigs.
View Article and Find Full Text PDFAlthough porcine reproductive and respiratory syndrome virus (PRRSV) readily crosses the maternal fetal interface (MFI) in third trimester, fetal resilience varies within litters. The aim of this study was to characterize PRRSV-2 concentration in MFI and fetuses at five time points after experimental inoculation of late gestation gilts and use this information to classify potentially resistant, resilient and susceptible fetuses. The secondary objective was to verify the relationship between PRRS viral load and intrauterine growth retardation (IUGR).
View Article and Find Full Text PDFMucohaemorrhagic diarrhea associated with Brachyspira hampsonii infection has emerged as a production-limiting disease in western Canada. This pathogen was first described in North America in 2010, and reports of its detection occurred concurrently in western Canada and the United States. Since that time, Brachyspira hampsonii has been detected in Europe, both in pigs and in waterfowl.
View Article and Find Full Text PDFBrachyspira hampsonii causes dysentery-like disease in infected pigs. Serial passage of a virulent swine isolate (P13) one-hundred times in laboratory culture medium was conducted to produce an attenuated strain, and to identify genomic determinants of virulence through comparison of genome sequences of the original and passaged strains. The resulting strain, P113, did not differ from P13 in terms of diagnostic biochemical characteristics but had an enhanced growth rate in culture, indicating laboratory adaptation.
View Article and Find Full Text PDFBackground: The development of a mouse model as an in vivo pathogenicity screening tool for Brachyspira spp. has advanced the study of these economically important pathogens in recent years. However, none of the murine models published to date have been used to characterize the clinical signs of disease in mice, instead focusing on pathology following oral inoculation with various Brachyspira spp.
View Article and Find Full Text PDFMucohemorrhagic diarrhea in pigs caused by Brachyspira spp. has a global distribution, and an economic impact on affected farms due to poor performance of animals. Demonstrations that "Brachyspira hampsonii" is pathogenic have been achieved using in vivo animal models, but a critical knowledge gap exists regarding the pathogenic mechanisms employed by Brachyspira.
View Article and Find Full Text PDFBackground: Most interactions between pathogenic microorganisms and their target host occur on mucosal surfaces of internal organs such as the intestine. In vitro organ culture (IVOC) provides an unique tool for studying host-pathogen interactions in a controlled environment. However, this technique requires a complex laboratory setup and specialized apparatus.
View Article and Find Full Text PDF