High surface area carbons are so far the best materials for industrial manufacturing of supercapacitor electrodes. Here we demonstrate that pine cones, an abundant bio-precursor currently considered as a waste in the wood industry, can be used to prepare activated carbons with a BET surface area exceeding 3000 m g. It is found that the same KOH activation procedure applied to reduced graphene oxide (rGO) and pine cone derived biochars results in carbon materials with a similar surface area, pore size distribution and performance in supercapacitor (SC) electrodes.
View Article and Find Full Text PDFThin films of ionic liquid 1-ethyl-3-methylimidazolium bis(fluoromethylsulfonyl)imide ([EMIm][FSI]) vapor-deposited on highly oriented pyrographite (HOPG) were studied by X-ray photoelectron spectroscopy and atomic force microscopy. The results revealed a reversible morphological transition from a "drop-on-layer" structure to a "flat-layer" structure at positive, and not at negative, polarization. The effect is rationalized in terms of electric-field-induced reduction of the liquid-solid transition temperature in the ionic liquid film, when its thickness is comparable to the charge screening length.
View Article and Find Full Text PDFWe report the results of systematic investigations of the influence of thermal history and other factors on crystallization of a model clathrate hydrate (cyclopentane hydrate) studied as water-in-oil and oil-in-water emulsions to remove the nucleation influence of substrates other than ice and hydrates. Hydrate and ice seem to form simultaneously under the conditions of these experiments, with ice forming preferentially. Thermal treatment, melting the ice, and leaving only the hydrate, promotes further hydrate formation.
View Article and Find Full Text PDF