With the expansion of wireless mobile networks into both the daily lives of individuals as well as into the widely developing market of connected devices, communication is an increasingly attractive target for attackers. As the complexity of mobile cellular systems grows and the respective countermeasures are implemented to secure data transmissions, the attacks have become increasingly sophisticated on the one hand, but at the same time the system complexity can open up expanded opportunities for security and privacy breaches. After an in-depth summary of possible entry points to attacks to mobile networks, this paper first briefly reviews the basic principles of the physical layer implementation of 4G/5G systems, then gives an overview of possible attacks from a physical layer perspective.
View Article and Find Full Text PDFThe manuscript focuses on an original method of preparation of metatitanic acid when only environmentally safe base substances are used in the synthesis process. The synthesis is based on the reaction of solid titanyl sulfate in an aqueous solution of sodium hydroxide. This method allows for (i) a full preservation of the morphology of the starting titanyl sulfate and (ii) a preparation of metatitanic acid substances with specific parameters.
View Article and Find Full Text PDFOrthogonal Time Frequency Space (OTFS) is a new, promising modulation waveform candidate for the next-generation integrated sensing and communication (ISaC) systems, providing environment-awareness capabilities together with high-speed wireless data communications. This paper presents the original results of OTFS-based person monitoring measurements in the 60 GHz millimeter-wave frequency band under realistic conditions, without the assumption of an integer ratio between the actual delays and Doppler shifts of the reflected components and the corresponding resolution of the OTFS grid. As the main contribution of the paper, we propose the use of the persistent homology technique as a method for processing gathered delay-Doppler responses.
View Article and Find Full Text PDFC-rich graphitic carbonitride materials (CN ) with a large range of compositions have been prepared thanks to the self-assembly, in different ratios, of melamine (M) and a panel of polycarboxylic acids (A) such as oxalic, tartaric and citric acid. The thermal conversion of the formed adducts (MA ), led to CN phases, with x ranging from 0.66 to 1.
View Article and Find Full Text PDFPorous carbons, originated from resorcinol-formaldehyde (RF) gels, show high application potential. However, the kinetics and mechanism of RF condensation are still not well described. In this work, different methods (dynamic light scattering-DLS, Fourier transform infrared spectroscopy-FTIR, low field H nuclear magnetic resonance relaxometry-H-NMR, and differential scanning calorimetry-DSC) were used to follow the isothermal RF condensation of mixtures varying in catalyst content (NaCO) and reactant concentration.
View Article and Find Full Text PDFMillimeter waves will play an important role in communication systems in the near future. On the one hand, the bandwidths available at millimeter-wave frequencies allow for elevated data rates, but on the other hand, the wide bandwidth accentuates the effects of wireless front-end impairments on transmitted waveforms and makes their compensation more difficult. Research into front-end impairment compensation in millimeter-wave frequency bands is currently being carried out, mainly using expensive laboratory setups consisting of universal signal generators, spectral analyzers and high-speed oscilloscopes.
View Article and Find Full Text PDFInteractions between bovine serum albumin and various clays including pure clay minerals and bentonite were studied with the aim to describe the interaction process. The adsorption of albumin on the clays is strongly affected by the behavior of clays in the aquatic environment (hydrolysis and release of cations). A sufficient amount of albumin was adsorbed on the acid-activated montmorillonite K10 (0.
View Article and Find Full Text PDFThe effect of carbon surface oxidation on the adsorption of Cu(II) ions from aqueous solution was studied in order to explain the role of the oxygen functional groups in the binding of copper ions. Pristine carbonaceous adsorbent was oxidized to a various extent of oxygen uptake (Fenton-like oxidation < persulphate in HSO < HO in HNO). Equilibrium adsorption tests were performed in acetate buffer at pH ≈ 5.
View Article and Find Full Text PDF