Publications by authors named "Roman Maniewski"

A methodology for the assessment of the cerebral hemodynamic reaction to normotensive hypovolemia, reduction in cerebral perfusion and orthostatic stress leading to ischemic hypoxia and reduced muscular tension is presented. Most frequently, the pilots of highly maneuverable aircraft are exposed to these phenomena. Studies were carried out using the system consisting of a chamber that generates low pressure around the lower part of the body - LBNP (lower body negative pressure) placed on the tilt table.

View Article and Find Full Text PDF

The diagnostic value of an ECG exercise test in diagnosis of ischemic heart disease (IHD) is limited. We investigated whether it is possible to develop a method for diagnosis of IHD which uses a low number of optimal ECG leads and has a higher diagnostic efficiency than conventional exercise ECG. This study was carried out on 43 patients.

View Article and Find Full Text PDF

An intra-abdominal pressure (IAP) is correlated with cerebral perfusion, in a mechanism of reducing venous outflow. The elevated intra-abdominal pressure leads to an increase in the intracranial pressure and a decrease in the cerebral perfusion pressure. We studied the relationship between the IAP and the cerebral oxygenation with the use of the near infrared spectroscopy technique during a gynecological surgery.

View Article and Find Full Text PDF

Standard 12-lead ECG exercise testing is commonly used for screening of ischemic heart disease (IHD). We studied if high-resolution body surface potential mapping (HR-BSPM) during exercise offers advantages over current standards in noninvasive evaluation of IHD. This study was carried out on 90 IHD patients and 33 healthy controls.

View Article and Find Full Text PDF

We aimed to determine whether optical methods based on bolus tracking of an optical contrast agent are useful for the confirmation of cerebral circulation cessation in patients being evaluated for brain death. Different stages of cerebral perfusion disturbance were compared in three groups of subjects: controls, patients with posttraumatic cerebral edema, and patients with brain death. We used a time-resolved near-infrared spectroscopy setup and indocyanine green (ICG) as an intravascular flow tracer.

View Article and Find Full Text PDF

We present an overview of the wide range of potential applications of optical methods for monitoring traumatic brain injury. The MEDLINE database was electronically searched with the following search terms: "traumatic brain injury," "head injury," or "head trauma," and "optical methods," "NIRS," "near-infrared spectroscopy," "cerebral oxygenation," or "cerebral oximetry." Original reports concerning human subjects published from January 1980 to June 2015 in English were analyzed.

View Article and Find Full Text PDF

Introduction: Recent studies point to analysis of T-wave alternans as a promising indicator of an increased risk of life-threatening ventricular arrhythmias. In this study the occurrence of T-wave alternans in the high-resolution ECGs recorded during the exercise stress test and scintigraphic tests (SPECT) in patients with ischemic heart disease was examined.

Material And Methods: The study group consisted of 33 patients after myocardial infarction.

View Article and Find Full Text PDF

Introduction: The aim of the study was to assess myocardial ischemia by analysis of ST-segment changes in high-resolution body surface potential maps (HR-BSPM) measured at rest and during an exercise stress test.

Material And Methods: The study was carried out on a group of 28 patients with stable coronary artery disease and 15 healthy volunteers. The HR-BSPM were measured at rest and during the exercise stress test on a supine ergometer.

View Article and Find Full Text PDF

Background: It is believed that endothelial dysfunction may be a link between systemic and ocular dysregulation in glaucoma. The aim of this study was to evaluate peripheral vascular reactive hyperemia in response to occlusion test and to correlate peripheral vascular findings with retrobulbar hemodynamics parameters in patients with normal-tension glaucoma.

Material And Methods: Forty-eight patients with normal-tension glaucoma (mean age 58.

View Article and Find Full Text PDF

The nEUROPt protocol is one of two new protocols developed within the European project nEUROPt to characterize the performances of time-domain systems for optical imaging of the brain. It was applied in joint measurement campaigns to compare the various instruments and to assess the impact of technical improvements. This protocol addresses the characteristic of optical brain imaging to detect, localize, and quantify absorption changes in the brain.

View Article and Find Full Text PDF

Background: The aim of this study was to analyze the U-wave morphology and its relation to the T-wave in one group of healthy subjects and in two groups of myocardial infarction (MI) patients-with and without ventricular tachycardia (VT) episodes. The context of the U-wave origin was also discussed and the U-wave as a potential marker of VT was investigated.

Methods: The study was carried out on three groups of subjects: 20 healthy subjects, 14 MI patients not at risk of VT, and 22 MI patients at risk of VT.

View Article and Find Full Text PDF

Inaccurate electrode placement and differences in inter-individual human anatomies can lead to misinterpretation of ECG examination. The aim of the study was to investigate the effect of precordial electrodes displacement on morphology of the ECG signal in a group of 60 patients with diagnosed cardiac disease. Shapes of ECG signals recorded from precordial leads were compared with signals interpolated at the points located at a distance up to 5 cm from lead location.

View Article and Find Full Text PDF

We report on a fluorescence-based optical method for assessment of blood-brain barrier in humans. The technique is based on monitoring of fluorescence light excited in the dye circulating in the brain. Measurements were carried out in healthy volunteers and in patients with disruption of the blood-brain barrier with the use of time-resolved method during inflow and washout of indocyanine green after its intravenous injection.

View Article and Find Full Text PDF

Optical technique based on diffuse reflectance measurement combined with indocyanine green (ICG) bolus tracking is extensively tested as a method for clinical assessment of brain perfusion in adults at the bedside. Methodology of multiwavelength and time-resolved detection of fluorescence light excited in the ICG is presented and advantages of measurements at multiple wavelengths are discussed. Measurements were carried out: 1.

View Article and Find Full Text PDF

It was reported that time-resolved reflectance measurements carried out during inflow and washout of an optical contrast agent may provide information on the blood supply to the brain cortex of human adults. It was also shown that a measurement of fluorescence excited in the dye circulating in the brain is feasible. Unfortunately, patterns of time-resolved fluorescence signals observed during in vivo measurements are difficult to interpret.

View Article and Find Full Text PDF

Recent studies have shown that time-resolved optical measurements of the head can estimate changes in the absorption coefficient with depth discrimination. Thus, changes in tissue oxygenation, which are specific to intracranial tissues, can be assessed using this advanced technique, and this method allows us to avoid the influence of changes to extracerebral tissue oxygenation on the measured signals. We report the results of time-resolved optical imaging that was carried out during carotid endarterectomy.

View Article and Find Full Text PDF

Background: The purpose of this study was to observe the influence of variety in individual torso geometries on the results of inverse solution to 2 dipoles.

Methods: The inverse solution to 2 dipoles was computed from the measured data on 8 patients using either standard torso with various shapes and sizes of the heart and lungs in it or using various outer torso geometries with the same inhomogeneities. The vertical position of the heart relative to the fourth intercostal level was kept constant in all models.

View Article and Find Full Text PDF

Recently, it was shown in measurements carried out on humans that time-resolved near-infrared reflectometry and fluorescence spectroscopy may allow for discrimination of information originating directly from the brain avoiding influence of contaminating signals related to the perfusion of extracerebral tissues. We report on continuation of these studies, showing that the near-infrared light can be detected noninvasively on the surface of the tissue at large interoptode distance. A multichannel time-resolved optical monitoring system was constructed for measurements of diffuse reflectance in optically turbid medium at very large source-detector separation up to 9 cm.

View Article and Find Full Text PDF

Background: The effective screening of myocardial infarction (MI) patients threatened by ventricular tachycardia (VT) is an important issue in clinical practice, especially in the process of implantable cardioverter-defibrillator (ICD) therapy recommendation. This study proposes new parameters describing depolarization and repolarization inhomogeneity in high resolution body surface potential maps (HR BSPM) to identify MI patients threatened by VT.

Material/methods: High resolution ECGs were recorded from 64 surface leads.

View Article and Find Full Text PDF

An imaging system for brain oxygenation based on a time-gated, intensified charge-coupled device camera was developed. It allows one to image diffusely reflected light from an investigated medium at defined time windows delayed with respect to the laser pulse. Applying a fast optomechanical switch to deliver the light at a wavelength of 780 nm to nine source fibers allowed one to acquire images in times as short as 4 s.

View Article and Find Full Text PDF

Multichannel time-resolved optical monitoring system was constructed for measurements of diffuse reflectance in optically turbid medium at very large source-detector separation up to 9 cm. The system is based on femtosecond TiSa laser and sensitive photomultiplier tube detector. The laser light of 300mW of power was delivered to the surface of the head with the use of an optical fiber.

View Article and Find Full Text PDF

In this paper we present validation of laser-Doppler spectrum decomposition procedure in estimation of speed distribution of particles. Decomposition method is based on assumption that measured laser-Doppler spectrum can be approximated by linear combination of Doppler shift probability distributions calculated for different speeds of particles and anisotropy of light scattering in the medium. The Doppler shift probability distributions were calculated using Monte-Carlo simulations for Henyey-Greenstein scattering phase function.

View Article and Find Full Text PDF

Objective: The aim of the study was to evaluate the influence of the number of electrocardiogram (ECG) leads on the diagnostic value of TCRT (spatial QRS-T angle) parameter (12 standard ECG leads and 61 surface ECG leads were used). The TCRT parameter, which describes the spatial QRS-T angle, is a useful indicator of the risk of ventricular tachycardia (VT) and sudden cardiac death (SCD). It is usually calculated from standard 12 leads ECG.

View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate influence of noise, T-wave jitter and electrocardiographic (ECG) signal parameters on sensitivity of T-wave alternans (TWA) detection methods.

Methods: Methods of the TWA detection were tested: correlation (CM), spectral (FFTM), spectral with coherent averaging (CFFTM), complex demodulation (CDM), Karhunen-Loeve transform (KLT) and KLT realized by adaptive filtering. The TWA amplitude and duration time were estimated on simulated ECG signals.

View Article and Find Full Text PDF

A time-resolved optical instrument allowing for noninvasive assessment of cerebral oxygenation is presented. The instrument is equipped with picosecond diode lasers, fast photodetectors, and time-correlated single photon counting electronics. This technology enables depth-resolved estimation of changes in absorption and, in consequence, assessment of changes in hemoglobin concentrations in the brain cortex.

View Article and Find Full Text PDF