Publications by authors named "Roman Mani"

We propose a model for increasing liquid saturation in a granular packing, which can account for liquid redistribution at saturation levels beyond the well-studied capillary bridge regime. The model is capable of resolving and combining capillary bridges, menisci, and fully saturated pores to form local liquid clusters of any shape. They can exchange volume due to the local Laplace pressure gradient via a liquid film on the surfaces of grains.

View Article and Find Full Text PDF

The stability of sand castles is determined by the structure of wet granulates. Experimental data on the size distribution of fluid pockets are ambiguous with regard to their origin. We discovered that contact-angle hysteresis plays a fundamental role in the equilibrium distribution of bridge volumes, and not geometrical disorder as commonly conjectured.

View Article and Find Full Text PDF

We study a one-dimensional system of spatially extended particles, which are attached to regularly spaced locations by means of elastic springs. The particles are assumed to be driven by Gaussian noise and to have dissipative, energy-conserving, or antidissipative (pinball-like) interactions, when the particle density exceeds a critical threshold. While each particle in separation shows a well-behaved behavior characterized by a Gaussian velocity distribution, the interaction of particles at high densities can cause an avalanchelike momentum and energy transfer, which can generate extreme (steep) power laws without a well-defined variance and mean value.

View Article and Find Full Text PDF

We propose a simple model, supported by contact-dynamics simulations as well as rheology and friction measurements, that links the transition from continuous to discontinuous shear thickening in dense granular pastes to distinct lubrication regimes in the particle contacts. We identify a local Sommerfeld number that determines the transition from Newtonian to shear-thickening flows, and then show that the suspension's volume fraction and the boundary lubrication friction coefficient control the nature of the shear-thickening transition, both in simulations and experiments.

View Article and Find Full Text PDF

How does pore liquid reconfigure within shear bands in wet granular media? Conventional wisdom predicts that liquid is drawn into dilating granular media. We, however, find a depletion of liquid in shear bands despite increased porosity due to dilatancy. This apparent paradox is resolved by a microscale model for liquid transport at low liquid contents induced by rupture and reconfiguration of individual liquid bridges.

View Article and Find Full Text PDF