The Ser/Thr protein kinase, RSK, is associated with oncogenesis, and therefore, there are ongoing efforts to develop RSK inhibitors that are suitable for use in vivo. SL0101 is a natural product that demonstrates selectivity for RSK inhibition. However, SL0101 has a short biological half-life in vivo.
View Article and Find Full Text PDFIn an effort to improve upon the in vivo half-life of the known ribosomal s6 kinase (RSK) inhibitor SL0101, C4″-amide/C6″-alkyl substituted analogues of SL0101 were synthesized and evaluated in cell-based assays. The analogues were prepared using a de novo asymmetric synthetic approach, which featured Pd-π-allylic catalyzed glycosylation for the introduction of a C4″-azido group. Surprisingly replacement of the C4″-acetate with a C4″-amide resulted in analogues that were no longer specific for RSK in cell-based assays.
View Article and Find Full Text PDFACS Med Chem Lett
February 2012
Enhanced activity of the Ser/Thr protein kinase, RSK, is associated with transformation and metastasis, which suggests that RSK is an attractive drug target. The natural product, SL0101 (kaempferol 3-O-(3″,4″-di-O-acetyl-α-L-rhamnopyranoside), has been shown to be a RSK selective inhibitor. However, the Ki for SL0101 is 1 μM with a half-life of less than 30 min .
View Article and Find Full Text PDFThe Ser/Thr protein kinase, RSK, is important in the etiology of tumor progression including invasion and motility. The natural product kaempferol-3-O-(3″,4″-di-O-acetyl-α-l-rhamnopyranoside), called SL0101, is a highly specific RSK inhibitor. Acylation of the rhamnose moiety is necessary for high affinity binding and selectivity.
View Article and Find Full Text PDF