Publications by authors named "Roman M Kassa"

Objective: To compare progressive motor impairment onset attributable to a "critical" central nervous system (CNS) demyelinating lesion in patients with highly restricted versus unlimited magnetic resonance imaging (MRI) lesion burden.

Methods: We identified 135 patients with progressive motor impairment for ⩾1 year attributable to a "critical" demyelinating lesion with: MRI burden of 1 lesion ("progressive solitary sclerosis"), 2-5 lesions ("progressive paucisclerosis"), or unrestricted (>5) lesions and "progressive unilateral hemiparesis." Neuroradiology review of brain and spinal cord MRI documented unequivocally demyelinating lesions.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motoneuron death. Several cellular pathways have been described to be involved in ALS pathogenesis; however, the involvement of presynaptic stripping and the related MHC class I molecules in mutant SOD1 motoneurons remains to be clarified. To this purpose, we here investigated, for the first time, the motoneurons behavior, di per seand after facial axonal injury, in terms of synaptic stripping and MHC class I expression in wild-type (Wt) mice and in a murine model of ALS, the SOD1(G93A) mice, at the presymptomatic and symptomatic stage of the disease.

View Article and Find Full Text PDF

Motoneuron degeneration is the hallmark of amyotrophic lateral sclerosis (ALS). The cause and predisposing factors for sporadic ALS are still unknown. Exposure to a specific environmental risk factors in subjects with a susceptibility genotype may increase the risk of the disease.

View Article and Find Full Text PDF

Konzo is a self-limiting central motor-system disease associated with food dependency on cassava and low dietary intake of sulfur amino acids (SAA). Under conditions of SAA-deficiency, ingested cassava cyanogens yield metabolites that include thiocyanate and cyanate, a protein-carbamoylating agent. We studied the physical and biochemical modifications of rat serum and spinal cord proteins arising from intoxication of young adult rats with 50-200mg/kg linamarin, or 200mg/kg sodium cyanate (NaOCN), or vehicle (saline) and fed either a normal amino acid- or SAA-deficient diet for up to 2 weeks.

View Article and Find Full Text PDF

Lower motoneuron abnormalities have been extensively documented in the murine model of familial amyotrophic lateral sclerosis, whereas information on corticospinal neurons in these mice is very limited. We investigated 1) mRNA levels of inflammation-related molecules in the deep layers in which corticospinal neurons reside, 2) corticospinal neurons labeled from tracer injections in the corticospinal tract at the cervical level, 3) axonal damage revealed by beta-amyloid precursor protein accumulation, and 4) glial cell activation in the sensorimotor cortex of presymptomatic and end-stage superoxide dismutase (SOD)-1 (G93A) mice. We demonstrated induction of inflammatory gene transcripts in the deep layers, early and progressive shrinkage of corticospinal cell bodies and activation of surrounding astrocytes and microglia with upregulation of major histocompatibility complex class I antigen.

View Article and Find Full Text PDF

The neurodegenerative disease amyotrophic lateral sclerosis affects lower motoneurons and corticospinal cells. Mice expressing human mutant superoxide dismutase (SOD)1 provide widely investigated models of the familial form of disease, but information on cortical changes in these mice is still limited. We here analyzed the spatial organization of interneurons characterized by parvalbumin immunoreactivity in the motor, somatosensory, and visual cortical areas of SOD1(G93A) mice.

View Article and Find Full Text PDF

Involvement of P2X1 and P2X2 purinergic receptors in motoneuron response to injury was investigated with Western blotting and immunohistochemistry and correlated with motoneuron loss, Bcl-2 expression, nitric oxide synthase induction and glial activation. P2X1 was highly induced in rat facial motoneurons after nerve resection, which causes slowly occurring neurodegeneration. P2X1 induction was lower and less persistent after nerve crush, permissive for fiber regeneration.

View Article and Find Full Text PDF