Publications by authors named "Roman Laskowski"

The process of heme binding to a protein is prevalent in almost all forms of life to control many important biological properties, such as O-binding, electron transfer, gas sensing or to build catalytic power. In these cases, heme typically binds tightly (irreversibly) to a protein in a discrete heme binding pocket, with one or two heme ligands provided most commonly to the heme iron by His, Cys or Tyr residues. Heme binding can also be used as a regulatory mechanism, for example in transcriptional regulation or ion channel control.

View Article and Find Full Text PDF

Rare genetic diseases affect millions, and identifying causal DNA variants is essential for patient care. Therefore, it is imperative to estimate the effect of each independent variant and improve their pathogenicity classification. Our study of 140 214 unrelated UK Biobank (UKB) participants found that each of them carries a median of 7 variants previously reported as pathogenic or likely pathogenic.

View Article and Find Full Text PDF

Constrained Coding Regions (CCRs) in the human genome have been derived from DNA sequencing data of large cohorts of healthy control populations, available in the Genome Aggregation Database (gnomAD) [1]. They identify regions depleted of protein-changing variants and thus identify segments of the genome that have been constrained during human evolution. By mapping these DNA-defined regions from genomic coordinates onto the corresponding protein positions and combining this information with protein annotations, we have explored the distribution of CCRs and compared their co-occurrence with different protein functional features, previously annotated at the amino acid level in public databases.

View Article and Find Full Text PDF
Article Synopsis
  • Most proteins fold into unique 3D shapes that dictate their functions within cells, and new computational methods, like AlphaFold2, have achieved high accuracy in predicting these structures, rivaling experimental results.
  • The study evaluates AlphaFold2's effectiveness in various applications, such as analyzing protein features, understanding how mutations affect function, and modeling interactions and experimental data.
  • It concludes that AlphaFold2 can model more structural details than traditional methods and performs well across different research applications, potentially transforming the field of structural biology and life sciences.
View Article and Find Full Text PDF

PDBsum1 is a standalone set of programs to perform the same structural analyses as provided by the PDBsum web server (https://www.ebi.ac.

View Article and Find Full Text PDF

The PDBsum web server provides structural analyses of the entries in the Protein Data Bank (PDB). Two recent additions are described here. The first is the detailed analysis of the SARS-CoV-2 virus protein structures in the PDB.

View Article and Find Full Text PDF

DNA-Damage Response (DDR) proteins are crucial for maintaining the integrity of the genome by identifying and repairing errors in DNA. Variants affecting their function can have severe consequences since failure to repair damaged DNA can result in cells turning cancerous. Here, we compare germline and somatic variants in DDR genes, specifically looking at their locations in the corresponding three-dimensional (3D) structures, Pfam domains, and protein-protein interaction interfaces.

View Article and Find Full Text PDF

The prediction of peptide binders to Major Histocompatibility Complex (MHC) class II receptors is of great interest to study autoimmune diseases and for vaccine development. Most approaches predict the affinities using sequence-based models trained on experimental data and multiple alignments from known peptide substrates. However, detecting activity differences caused by single-point mutations is a challenging task.

View Article and Find Full Text PDF

Background: Proteases are key drivers in many biological processes, in part due to their specificity towards their substrates. However, depending on the family and molecular function, they can also display substrate promiscuity which can also be essential. Databases compiling specificity matrices derived from experimental assays have provided valuable insights into protease substrate recognition.

View Article and Find Full Text PDF

VarSite is a web server mapping known disease-associated variants from UniProt and ClinVar, together with natural variants from gnomAD, onto protein 3D structures in the Protein Data Bank. The analyses are primarily image-based and provide both an overview for each human protein, as well as a report for any specific variant of interest. The information can be useful in assessing whether a given variant might be pathogenic or benign.

View Article and Find Full Text PDF

Motivation: Understanding the protein structural context and patterning on proteins of genomic variants can help to separate benign from pathogenic variants and reveal molecular consequences. However, mapping genomic coordinates to protein structures is non-trivial, complicated by alternative splicing and transcript evidence.

Results: Here we present VarMap, a web tool for mapping a list of chromosome coordinates to canonical UniProt sequences and associated protein 3D structures, including validation checks, and annotating them with structural information.

View Article and Find Full Text PDF

Background: Syntaxin-binding protein 1, encoded by , is highly expressed in the brain and involved in fusing synaptic vesicles with the plasma membrane. Studies have shown that pathogenic loss-of-function variants in this gene result in various types of epilepsies, mostly beginning early in life. We were interested to model pathogenic missense variants on the protein structure to investigate the mechanism of pathogenicity and genotype-phenotype correlations.

View Article and Find Full Text PDF

PDBsum is a web server providing structural information on the entries in the Protein Data Bank (PDB). The analyses are primarily image-based and include protein secondary structure, protein-ligand and protein-DNA interactions, PROCHECK analyses of structural quality, and many others. The 3D structures can be viewed interactively in RasMol, PyMOL, and a JavaScript viewer called 3Dmol.

View Article and Find Full Text PDF

The ProFunc web server is a tool for helping identify the function of a given protein whose 3D coordinates have been experimentally determined or homology modeled. It uses a cocktail of both sequence- and structure-based methods to identify matches to other proteins that may, in turn, suggest the query protein's most likely function. The server was originally developed to aid the worldwide structural genomics effort at the start of the millennium.

View Article and Find Full Text PDF

Haploinsufficiency in DYRK1A is associated with a recognizable developmental syndrome, though the mechanism of action of pathogenic missense mutations is currently unclear. Here we present 19 de novo mutations in this gene, including five missense mutations, identified by the Deciphering Developmental Disorder study. Protein structural analysis reveals that the missense mutations are either close to the ATP or peptide binding-sites within the kinase domain, or are important for protein stability, suggesting they lead to a loss of the protein's function mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • Flavin-dependent monooxygenases are important enzymes with various biological functions and applications in biotechnology.
  • Researchers classified these enzymes into eight classes (A-H) based on their sequences and features, focusing on classes A, B, E, F, and G for evolutionary analysis.
  • The study suggests that the evolution of these enzymes involved the recruitment of different domains and single-point mutations, with a key focus on the functional binding of cofactors and a unique split in the flavin-binding domain across all classes.
View Article and Find Full Text PDF

Decades of intensive experimental studies of the recognition of DNA sequences by proteins have provided us with a view of a diverse and complicated world in which few to no features are shared between individual DNA-binding protein families. The originally conceived direct readout of DNA residue sequences by amino acid side chains offers very limited capacity for sequence recognition, while the effects of the dynamic properties of the interacting partners remain difficult to quantify and almost impossible to generalise. In this work we investigated the energetic characteristics of all DNA residue-amino acid side chain combinations in the conformations found at the interaction interface in a very large set of protein-DNA complexes by the means of empirical potential-based calculations.

View Article and Find Full Text PDF

In mammals, the master transcription regulator of antioxidant defences is provided by the Nrf2 protein. Phylogenetic analyses of Nrf2 sequences are used here to derive a molecular clock that manifests persuasive evidence that Nrf2 orthologues emerged, and then diverged, at two time points that correlate with well-established geochemical and palaeobiological chronologies during progression of the 'Great Oxygenation Event'. We demonstrate that orthologues of Nrf2 first appeared in fungi around 1.

View Article and Find Full Text PDF

Many applications, such as protein design, homology modeling, flexible docking, etc. require the prediction of a protein's optimal side-chain conformations from just its amino acid sequence and backbone structure. Side-chain prediction (SCP) is an NP-hard energy minimization problem.

View Article and Find Full Text PDF
Protein Structure Databases.

Methods Mol Biol

December 2017

Web-based protein structure databases come in a wide variety of types and levels of information content. Those having the most general interest are the various atlases that describe each experimentally determined protein structure and provide useful links, analyses, and schematic diagrams relating to its 3D structure and biological function. Also of great interest are the databases that classify 3D structures by their folds as these can reveal evolutionary relationships which may be hard to detect from sequence comparison alone.

View Article and Find Full Text PDF

The growing number of high-quality experimental (X-ray, NMR) structures of protein–DNA complexes has sufficient enough information to assess whether universal rules governing the DNA sequence recognition process apply. While previous studies have investigated the relative abundance of various modes of amino acid–base contacts (van der Waals contacts, hydrogen bonds), relatively little is known about the energetics of these noncovalent interactions. In the present study, we have performed the first large-scale quantitative assessment of binding preferences in protein–DNA complexes by calculating the interaction energies in all 80 possible amino acid–DNA base combinations.

View Article and Find Full Text PDF

We present a generic, multidisciplinary approach for improving our understanding of novel missense variants in recently discovered disease genes exhibiting genetic heterogeneity, by combining clinical and population genetics with protein structural analysis. Using six new de novo missense diagnoses in TBL1XR1 from the Deciphering Developmental Disorders study, together with population variation data, we show that the β-propeller structure of the ubiquitous WD40 domain provides a convincing way to discriminate between pathogenic and benign variation. Children with likely pathogenic mutations in this gene have severely delayed language development, often accompanied by intellectual disability, autism, dysmorphology and gastrointestinal problems.

View Article and Find Full Text PDF

How do the surface side chains of a protein behave when it binds to another protein? Do they optimize interactions by crumpling inwards or by extending outwards?

View Article and Find Full Text PDF

Representative pairs of amino acid side chains and nucleic acid bases extracted from available high-quality structures of protein-DNA complexes were analyzed using a range of computational methods. CCSD(T)/CBS interaction energies were calculated for the chosen 272 pairs. These reference interaction energies were used to test the MP2.

View Article and Find Full Text PDF