J Acoust Soc Am
September 2022
A landmark is a familiar target in terms of the echoes that it can produce and is important for echolocation-based navigation by bats, robots, and blind humans. A brain-inspired system (BIS) achieves confident recognition, defined as classification to an arbitrarily small error probability (PE), by employing a voting process with an echo sequence. The BIS contains sensory neurons implemented with binary single-layer perceptrons trained to classify echo spectrograms with PE and generate excitatory and inhibitory votes in face neurons until a landmark-specific face neuron achieves recognition by reaching a confidence vote level (CVL).
View Article and Find Full Text PDFClassifying foliage targets using echolocation is important for recognizing landmarks by bats using ultrasonic emissions and blind human echolocators (BEs) using palatal clicks. Previous attempts to classify foliage used ultrasonic frequencies and single sensor (monaural) detection. Motivated by the echolocation capabilities of BEs, a biomimetic sonar emitting audible clicks acquired 5600 binaural echoes from five sequential emissions that probed two foliage targets at aspect angles separated by 18°.
View Article and Find Full Text PDFThis paper investigates classifying two target groups, surface reflectors (SR) and volume scatterers (VS), using echo envelope features. SR targets have convex surface patches that exhibit echo persistence over aspect angle, while VS targets are composed of random range-distributed and oriented reflectors producing echoes that become uncorrelated with small changes in aspect angle. The SR target group contains single-post (P1) and multiple-post (PM) types and the VS group contains Ficus benjamina (F) and Schefflera arboricola (S) foliage types with leaf areas that differ by a factor of 4.
View Article and Find Full Text PDFJ Acoust Soc Am
April 2019
A sonar cognitive map displays target components that are specified by signal features extracted from a single binaural echo pair. A biomimetic audible sonar probes targets configured using posts connected by tangential planes. Echo envelopes are processed to extract values of eight parameters that govern the mapping process.
View Article and Find Full Text PDFJ Acoust Soc Am
May 2018
A biomimetic audible sonar mimics human echolocation by emitting clicks and sensing echoes binaurally to investigate the limitations in acoustic mapping of 2.5 dimensional targets. A monaural sonar that provides only echo time-of-flight values produces biased maps that lie outside the target surfaces.
View Article and Find Full Text PDFThis paper describes phase-sensitive and phase-insensitive processing of monaural echolocation waveforms to generate target maps. Composite waveforms containing both the emission and echoes are processed to estimate the target impulse response using an audible sonar. Phase-sensitive processing yields the composite signal envelope, while phase-insensitive processing that starts with the composite waveform power spectrum yields the envelope of the autocorrelation function.
View Article and Find Full Text PDFJ Acoust Soc Am
February 2016
Blind humans echolocate nearby targets by emitting palatal clicks and perceiving echoes that the auditory system is not able to resolve temporally. The mechanism for perceiving near-range echoes is not known. This paper models the direct mouth-to-ear signal (MES) and the echo to show that the echo enhances the high-frequency components in the composite MES/echo signal with features that allow echolocation.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2012
Bats have remarkable echolocation capabilities to detect prey in darkness. While it is clear how bats do this for prey that is isolated, moving, or noisy, their ability to find still and quiet prey within clutter has remained a mystery. A video published by the ChiRoPing group shows the gleaning bat Micronycteris microtis capturing a still dragonfly specimen sitting on a leaf surface.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2012
Just prior to capture the Buzz II emissions of some mouth-emitting bats, such as Eptesicus fuscus, are observed to exhibit spectra having multiple peaks. This paper proposes an echolocation strategy that uses such spectra with energy concentrated in specific frequency bands for determining target elevation. A biomimetic sonar was implemented to produce a tri-modal spectrum by driving a speaker with a signal rich in harmonics.
View Article and Find Full Text PDFThis paper describes a possible bat noseleaf echolocation function that improves target elevation resolution. Bats with a protruding noseleaf can rotate the lancet to act as an acoustic mirror that reflects the nostril emission, modeled as a virtual nostril that produces a delayed emission. The cancellation of the nostril and virtual nostril components at a target produces a sharp spectral notch whose frequency location relates to target elevation.
View Article and Find Full Text PDFJ Acoust Soc Am
November 2010
A protruding noseleaf and concave pinna structures suggest that some bats may use these to enhance their echolocation capabilities. This paper considers two possible mechanisms that each exploit the combination of direct and delayed acoustic paths to achieve more complex emission or sensitivity echolocation patterns. The first is an emission mechanism, in which the protruding noseleaf vibrates to emit sound in both the forward and backward directions, and pinna structures reflect the backward emission to enhance the forward beam.
View Article and Find Full Text PDFA new sonar system based on the conventional 6500 ranging module is presented that generates a sequence of spikes whose temporal density is related to the strength of the received echo. This system notably improves the resolution of a previous system by shortening the discharge cycle of the integrator included in the module. The operation is controlled by a PIC18F452 device, which can adapt the duration of the discharge to changing features of the echo, providing the system with a novel adaptive behavior.
View Article and Find Full Text PDFJ Acoust Soc Am
May 2009
The pinnae of bats contain ridges whose function was previously thought to be structural. This paper suggests that ridges form a reflecting Fresnel lens that focuses high-frequency acoustic signals into the ear canal to form a narrow elevation sensitivity beam. E.
View Article and Find Full Text PDFA general expression for the dispersion of acoustic waves in air is obtained by combining the attenuation coefficient given by the ISO:9613-1 standard and the twice-subtracted Kramers-Kronig relation. Good agreement is found with published data of sound velocity at different frequencies and relative humidities. The resulting expression is used to investigate changes in local dispersion with temperature and humidity.
View Article and Find Full Text PDFBioinspired engineering based on biosonar systems in nature is reviewed and discussed in terms of the merits of different approaches and their results: biosonar systems are attractive technological paragons because of their capabilities, built-in task-specific knowledge, intelligent system integration and diversity. Insights from the diverse set of sensing tasks solved by bats are relevant to a wide range of application areas such as sonar, biomedical ultrasound, non-destructive testing, sensors for autonomous systems and wireless communication. Challenges in the design of bioinspired sonar systems are posed by transducer performance, actuation for sensor mobility, design, actuation and integration of beamforming baffle shapes, echo encoding for signal processing, estimation algorithms and their implementations, as well as system integration and feedback control.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2004
Echoes from in situ tree trunks, similar to those observed by flying bats, are processed. A moving sonar converts echoes into spike sequences and applies neural-computational methods to classify objects and estimate passing range. Two classes of tree trunks act as retro-reflectors that generate strong echoes (SEs), identified by a locally dense spike pattern.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
October 2002
Electronic travel aids (ETAs) for the blind commonly employ conventional time-of-flight sonars to provide range measurements, but their wide beams prevent accurate determination of object bearing. We describe a binaural sonar that detects objects over a wider bearing interval compared with a single transducer and also determines if the object lies to the left or right of the sonar axis in a robust manner. The sonar employs a pair of Polaroid 6500 ranging modules connected to Polaroid 7000 transducers operating simultaneously in a binaural array configuration.
View Article and Find Full Text PDF