Unlabelled: Metastatic breast cancer has a poor prognosis and is largely considered incurable. A better understanding of the molecular determinants of breast cancer metastasis could facilitate development of improved prevention and treatment strategies. We used lentiviral barcoding coupled to single-cell RNA sequencing to trace clonal and transcriptional evolution during breast cancer metastasis and showed that metastases derive from rare prometastatic clones that are underrepresented in primary tumors.
View Article and Find Full Text PDFTo detect the epigenetic drift of time passing, we determined the genome-wide distributions of mono- and tri-methylated lysine 4 and acetylated and tri-methylated lysine 27 of histone H3 in the livers of healthy 3, 6 and 12 months old C57BL/6 mice. The comparison of different age profiles of histone H3 marks revealed global redistribution of histone H3 modifications with time, in particular in intergenic regions and near transcription start sites, as well as altered correlation between the profiles of different histone modifications. Moreover, feeding mice with caloric restriction diet, a treatment known to retard aging, reduced the extent of changes occurring during the first year of life in these genomic regions.
View Article and Find Full Text PDFBreast cancer (BC) constitutes a major health problem worldwide, making it the most common malignancy in women. Current treatment options for BC depend primarily on histological type, molecular markers, clinical aggressiveness and stage of disease. Immunotherapy, such as αPD-1, have shown combinatorial clinical activity with chemotherapy in triple negative breast cancer (TNBC) delineating some therapeutic combinations as more effective than others.
View Article and Find Full Text PDFBackground: Single-cell sequencing technologies provide unprecedented opportunities to deconvolve the genomic, transcriptomic or epigenomic heterogeneity of complex biological systems. Its application in samples from xenografts of patient-derived biopsies (PDX), however, is limited by the presence of cells originating from both the host and the graft in the analysed samples; in fact, in the bioinformatics workflows it is still a challenge discriminating between host and graft sequence reads obtained in a single-cell experiment.
Results: We have developed XenoCell, the first stand-alone pre-processing tool that performs fast and reliable classification of host and graft cellular barcodes from single-cell sequencing experiments.
Checkpoint inhibitors (CI) instigate anticancer immunity in many neoplastic diseases, albeit only in a fraction of patients. The clinical success of cyclophosphamide (C)-based haploidentical stem-cell transplants indicates that this drug may re-orchestrate the immune system. Using models of triple-negative breast cancer (TNBC) with different intratumoral immune contexture, we demonstrate that a combinatorial therapy of intermittent C, CI, and vinorelbine activates antigen-presenting cells (APC), and abrogates local and metastatic tumor growth by a T-cell-related effect.
View Article and Find Full Text PDFUnlabelled: Despite the growing availability of sophisticated bioinformatic methods for the analysis of single-cell RNA-seq data, few tools exist that allow biologists without extensive bioinformatic expertise to directly visualize and interact with their own data and results. Here, we present Cerebro (cell report browser), a Shiny- and Electron-based standalone desktop application for macOS and Windows which allows investigation and inspection of pre-processed single-cell transcriptomics data without requiring bioinformatic experience of the user. Through an interactive and intuitive graphical interface, users can (i) explore similarities and heterogeneity between samples and cell clusters in two-dimensional or three-dimensional projections such as t-SNE or UMAP, (ii) display the expression level of single genes or gene sets of interest, (iii) browse tables of most expressed genes and marker genes for each sample and cluster and (iv) display trajectories calculated with Monocle 2.
View Article and Find Full Text PDFBackground: The introduction of pathology tissue-chromatin immunoprecipitation (PAT-ChIP), a technique allowing chromatin immunoprecipitation (ChIP) from formalin-fixed paraffin-embedded (FFPE) tissues, has extended the application of chromatin studies to clinical patient samples. However, extensive crosslinking introduced during routine tissue fixation of clinical specimens may hamper the application of PAT-ChIP to genome-wide studies (PAT-ChIP-Seq) from archived tissue samples. The reduced efficiency in chromatin extraction from over-fixed formalin archival samples is the main hurdle to overcome, especially when low abundant epigenetic marks (e.
View Article and Find Full Text PDFInduced pluripotent stem cell (iPSC)-derived hematopoietic cells represent a highly attractive source for cell and gene therapy. Given the longevity, plasticity, and self-renewal potential of distinct macrophage subpopulations, iPSC-derived macrophages (iPSC-Mφ) appear of particular interest in this context. We here evaluated the airway residence, plasticity, and therapeutic efficacy of iPSC-Mφ in a murine model of hereditary pulmonary alveolar proteinosis (herPAP).
View Article and Find Full Text PDF